Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Maximizing Output Power of a CFPG Micro Energy-Harvester for Wearable Medical Sensors

Published

Author(s)

Mehdi Dadfarnia, Kamran Sayrafian, Paul Mitcheson, John Baras

Abstract

Energy Harvesting refers to the process of capturing and storing energy from the ambient environment. Kinetic energy harvested from the human body motion seems to be one of the most convenient and attractive solutions for wearable wireless sensors in healthcare applications. Due to their small size, such sensors are often powered by small batteries which might necessitate frequent recharge or even sensor replacement. Energy harvesting can prolong the battery lifetime of these sensors. This could directly impact their everyday use and significantly help their commercial applications such as remote monitoring. In this paper, our aim is to develop a Simulink model of the CFPG device that can be used to study temporal behavior of the generated power. Having such a dynamic model, not only helps to have a more accurate estimation of the amount of power generated from various human movements, but also allows us to further optimize the design parameters of the micro-harvester (e.g. size/dimension, electrostatic holding force, etc.) with the characteristics of the input acceleration (i.e. human activity).
Conference Dates
November 3-5, 2014
Conference Location
Athens, GR
Conference Title
4th International Conference on Wireless Mobile Communication and Healthcare

Keywords

Micro energy-harvester, body sensors, mathematical modeling

Citation

Dadfarnia, M. , Sayrafian, K. , Mitcheson, P. and Baras, J. (2016), Maximizing Output Power of a CFPG Micro Energy-Harvester for Wearable Medical Sensors, 4th International Conference on Wireless Mobile Communication and Healthcare , Athens, GR, [online], https://doi.org/10.1109/MOBIHEALTH.2014.7015950, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=917089 (Accessed December 3, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created October 30, 2016, Updated October 12, 2021