NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Milligram mass metrology using an electrostatic force balance
Published
Author(s)
Gordon A. Shaw, Julian Stirling, John A. Kramar, Alexander D. Moses, Patrick J. Abbott, Richard L. Steiner, Andrew D. Koffman, Jon R. Pratt, Zeina J. Kubarych
Abstract
Although mass is typically defined within the International System of Units (SI) at the Kilogram level, the pending redefinition of the SI provides an opportunity to realize mass at any scale using electrical metrology. We propose the use of an electromechanical balance to realize mass at the milligram level using SI electrical units. The use of a concentric-cylinder vacuum gap capacitor allows us to leverage the highly precise references available for capacitance, voltage and length to generate an electrostatic reference force. Weighing experiments performed on 1 milligram and 20 milligram artifacts show slightly lower uncertainty than similar experiments performed by subdividing the kilogram. The measurement is currently limited by the stability of the materials composing the mass artifacts and the changes in adsorbed layers on the artifact surfaces as they are transferred from vacuum to air.
mass, force, kilogram, milligram, electrostatic force balance, metrology, SI, redefinition
Citation
Shaw, G.
, Stirling, J.
, Kramar, J.
, Moses, A.
, Abbott, P.
, Steiner, R.
, Koffman, A.
, Pratt, J.
and Kubarych, Z.
(2016),
Milligram mass metrology using an electrostatic force balance, Metrologia, [online], https://doi.org/10.1088/0026-1394/53/5/A86
(Accessed October 13, 2025)