An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
N-methylmesoporphyrin IX fluorescence as a reporter of strand orientation in guanine quadruplexes
Published
Author(s)
Navin C. Sabharwal, Victoria Savikhin, Joshua Turek-Herman, John M. Nicoludis, Veronika Szalai, Liliya Yatsunyk
Abstract
Guanine quadruplexes (GQ) are four-stranded DNA structures formed by guanine-rich DNA sequences. Formation of GQs inhibits cancer cell survival, but detecting GQs in vivo has proved difficult, in part because of GQ structural diversity. Development of GQ-selective fluorescent reporters that are sensitive to GQ structure would enhance our ability to quantify the number and location of GQs, ultimately advancing biological studies of quadruplex relevance and functions. N-methyl mesoporphyrin IX (NMM) interacts selectively with parallel-stranded GQs. In addition, its fluorescence is sensitive to the presence of DNA, making this ligand a possible candidate for a quadruplex probe. We have investigated the effect of DNA secondary structure and GQ strand orientation on NMM fluorescence. Consistent with NMM's strong preference for parallel-stranded GQ's, we find that NMM fluorescence increases significantly by about 60-fold in the presence of these structures (IL1, G4, G8, VEGF, cMyc, and cKit2). Increases of about 40-fold are observed when NMM is presented with hybrid quadruplexes (cKit1, G4TERT, Bcl-2, Tel22, and 26TelG4). Antiparallel GQs (Tel22, TBA, 26TelG4, and G4T4G4, all in sodium buffer) cause only small increase in NMM fluorescence, about 9-fold. Non-quadruplex DNA structures such as single-stranded DNA, duplex, or i-motif induce no change in NMM fluorescence. We conclude that NMM could be a promising fluorescent probe for detecting quadruplex structures and for differentiating them on the basis of their strand orientation.
Sabharwal, N.
, Savikhin, V.
, Turek-Herman, J.
, Nicoludis, J.
, Szalai, V.
and Yatsunyk, L.
(2014),
N-methylmesoporphyrin IX fluorescence as a reporter of strand orientation in guanine quadruplexes, FEBS Journal, [online], https://doi.org/10.1111/febs.12734, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=914285
(Accessed April 1, 2025)