NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A comparison was made between the mass spectra of propane (CH6d3^CH2CH3) for resonant soft X-ray photofragmentation and electron-impact ionization. The soft X-ray photon energy was tuned to 287.7 eV to promote Auger relaxations from the C-H bonds (1s _> C-H ς* transition). It was hypothesized that this would lead to proton loss without C-C chain fragmentation. Compared to traditional 70 eV electron-impact ionization, photoionization does bias the mass spectrum toward proton loss; however, residual vibrational energy in the room temperature propane leads to a non-trival amount of C-C bond scission. The resonant soft X-ray photofragmentation is dominated by three-carbon ions between 38 u and 40 u created by the loss of hydrogen while the electron-impact ionization is dominated by a major peak at 29 u corresponding to the two-carbon ion C2H5+. Within each envelope of three-, two-, or single-carbon ions the core-level photoionization spectrum showed a bias toward enhanced multiple hydrogen removal compared to the electron-stimulated spectrum.
Citation
Journal of Electron Spectroscopy and Related Phenomena
Wallace, W.
and Fischer, D.
(2003),
Resonant Soft X-Ray Photofragmentation of Propane, Journal of Electron Spectroscopy and Related Phenomena, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=852055
(Accessed October 25, 2025)