Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 26 - 50 of 1595

Zeeman-resolved Autler-Townes splitting in Rydberg atoms with a tunable RF resonance and a single transition dipole moment

February 21, 2024
Author(s)
Noah Schlossberger, Drew Rotunno, Aly Artusio-Glimpse, Nik Prajapati, Samuel Berweger, Dangka Shylla, Matt Simons, Christopher L. Holloway
Applying a magnetic field as a method for tuning the frequency of Autler-Townes splitting for Rydberg electrometry has recently been demonstrated. In this Letter, we provide a theoretical understanding of Rydberg electromechanically-induced-transparency

Low-noise microwave generation with an air-gap optical reference cavity

January 30, 2024
Author(s)
Yifan Liu, Dahyeon Lee, Takuma Nakamura, Naijun Jin, Haotian Cheng, Megan Kelleher, Charles McLemore, Igor Kudelin, William Groman, Scott Diddams, Peter Rakich, Franklyn Quinlan
We demonstrate a high finesse, microfabricated mirror-based, air-gap cavity with volume less than 1 ml, constructed in an array, that can support low-noise microwave generation through optical frequency division. We use the air-gap cavity in conjunction

Visible to Ultraviolet Frequency Comb Generation in Lithium Niobate Nanophotonic Waveguides

January 15, 2024
Author(s)
Tsung Han Wu, Luis Ledezma, Connor Fredrick, Pooja Sekhar, Ryoto Sekine, Quishi Guo, Ryan Briggs, Alireza Marandi, Scott Diddams
The introduction of nonlinear nanophotonic devices to the field of optical frequency comb metrology has enabled new opportunities for low-power and chip-integrated clocks, high-precision frequency synthesis, and broad bandwidth spectroscopy. However, most

Threshold and Laser Conversion in Nanostructured-Resonator Parametric Oscillators

January 10, 2024
Author(s)
Haixin Liu, Grant Brodnik, Jizhao Zang, David Carlson, Jennifer Black, Scott Papp
We explore optical parametric oscillation (OPO) in nanophotonic resonators, enabling arbitrary, nonlinear phase matching and nearly lossless control of energy conversion. Such pristine OPO laser converters are determined by nonlinear light-matter

Photonic Online Learning

January 9, 2024
Author(s)
Sonia Buckley, Adam McCaughan, Bakhrom Oripov
Training in machine learning necessarily involves more operations than inference only, with higher precision, more memory, and added computational complexity. In hardware, many implementations side-step this issue by designing "inference-only" hardware

Scalable and robust beam shaping using apodized fish-bone grating couplers

November 20, 2023
Author(s)
Chad Ropp, Dhriti Maurya, Alexander Yulaev, Daron Westly, Gregory Simelgor, Vladimir Aksyuk
Efficient power coupling between guided and free-space optical modes requires precision spatial mode matching with apodized Bragg gratings. Yet, grating apodizations are often limited by the minimum feature size realizable by the fabrication approach

Direct-Laser-Written Polymer Nanowire Waveguides for Broadband Single Photon Collection from Epitaxial Quantum Dots into a Gaussian-like Mode

November 16, 2023
Author(s)
Edgar Perez, Cori Haws, Marcelo Davanco, Jindong Song, Luca Sapienza, Kartik Srinivasan
Single epitaxial quantum dots (QDs) are a leading technology for quantum light generation, particularly when they are embedded in photonic geometries that enhance their emission into a targeted and confined mode. However, coupling this mode into a

A novel approach to interface high-Q Fabry-Perot resonators with photonic circuits

November 3, 2023
Author(s)
Haotian Cheng, Naijun Jin, Zhaowei Dai, Chao Xiang, Joel Guo, Yishu Zhou, Scott Diddams, John Bowers, Owen Miller, Peter Rakich
The unique benefits of Fabry–Pérot resonators as frequency-stable reference cavities and as an efficient interface between atoms and photons make them an indispensable resource for emerging photonic technologies. To bring these performance benefits to next

Superconducting X-ray Sensors for Tomography of Microelectronics

November 1, 2023
Author(s)
Joseph Fowler, Zachary H. Levine, Paul Szypryt, Daniel Swetz
Tomographic imaging of integrated circuits at scales smaller than 1 micrometer is a challenging x-ray measurement. We describe a research instrument based upon superconducting x-ray microcalorimeters, which help to discriminate among materials in a sample

Single-photon Sources and Detectors Dictionary

September 7, 2023
Author(s)
Joshua Bienfang, Thomas Gerrits, Paulina Kuo, Alan Migdall, Sergey Polyakov, Oliver T. Slattery
The intention of this dictionary is to define relevant terms and metrics used in the characterization of single-photon detectors and sources with the goal to promote better understanding and communication of those metrics across the single-photon

Sub-GHz Resolution Line-by-Line Pulse Shaper for Driving Josephson Junctions

August 29, 2023
Author(s)
Dahyeon Lee, Takuma Nakamura, Andrew Metcalf, Nathan Flowers-Jacobs, Anna Fox, Paul Dresselhaus, Franklyn Quinlan
We demonstrate a sub-GHz resolution, fully programmable Fourier-domain pulse shaper capable of generating arbitrary optical pulse patterns. This high resolution allows line-by-line pulse shaping of a 1 GHz comb with a span as large as 1 THz, which

Synthetic Aperture RF Reception using Rydberg Atoms

August 2, 2023
Author(s)
Nik Prajapati, Aly Artusio-Glimpse, Matt Simons, Samuel Berweger, Drew Rotunno, Maitreyi Jayaseelan, Kaleb Campbell, Christopher L. Holloway
Rydberg atoms show great promise for use as self-calibrated electric field sensors for a broad range of frequencies. Their response is traceable to the international system of units making them a valuable tool for a variety of applications including

Quantum-limited optical time transfer for future geosynchronous links

June 21, 2023
Author(s)
Emily Caldwell, Jean-Daniel Deschenes, Jennifer Ellis, William C. Swann, Benjamin Stuhl, Hugo Bergeron, Nathan R. Newbury, Laura Sinclair
The combination of optical time transfer and optical clocks opens up the possibility of large-scale free-space networks that connect both ground-based optical clocks and future space-based optical clocks. Such networks promise better tests of general
Displaying 26 - 50 of 1595