Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 351 - 375 of 870

Detector-Independent Verification of Quantum Light

April 21, 2017
Author(s)
Jan Sperling, W.R. Clements, Andreas Eckstein, Meritt Moore, Jelmer Renema, Steven Kolthammer, Sae Woo Nam, Adriana Lita, Thomas Gerrits, Wolfgang Vogel, G.S. Agarwal, Ian Walmsley
We introduce a method for the verification of nonclassical light which is independent of the complex interaction between the generated light and the material of the detectors, which are in our work superconducting transition-edge sensors. This is achieved

UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap

April 17, 2017
Author(s)
Daniel H. Slichter, Varun B. Verma, Dietrich G. Leibfried, Richard P. Mirin, Sae Woo Nam, David J. Wineland
We demonstrate superconducting nanowire single photon detectors with 76 +/- 4% system detection efficiency at a wavelength of 315 nm and an operating temperature of 3.2 K, with a background count rate below 1 count per second at saturated detection

Qubit gates using hyperbolic secant pulses

April 7, 2017
Author(s)
Hsiang S. Ku, Junling Long, Xian Wu, Mustafa Bal, Russell Lake, Edwin Barnes, Sophia Economou, David P. Pappas
It has been known since the early days of quantum mechanics that hyperbolic secant pulses possess the unique property that they can perform cyclic evolution on two-level quantum systems independently of the pulse detuning. More recently, it was realized

Arbitrarily fast quantum computation with bounded energy

March 6, 2017
Author(s)
Stephen P. Jordan
One version of the energy-time uncertainty principle states that the minimum time for a quantum system to evolve from a given state to any orthogonal state is h/(4 Δ E) where Δ E is the energy uncertainty. Many subsequent works have interpreted this as

Optical quantum memory based on electromagnetically induced transparency

February 20, 2017
Author(s)
Lijun Ma, Oliver T. Slattery, Xiao Tang
Electromagnetically induced transparency (EIT) is a promising approach to implement quantum memory in quantum communication and quantum computing applications. In this paper, following a brief overview of the main approaches to quantum memory, we provide

Field Programmable Josephson Amplifier for non-reciprocal microwave signal processing

February 17, 2017
Author(s)
Florent Q. Lecocq, Leonardo Ranzani, Gabriel A. Peterson, Katarina Cicak, Raymond W. Simmonds, John D. Teufel, Jose A. Aumentado
We report on the design and implementation of a Field Programmable Josephson Amplifier (FPJA) - a compact and lossless superconducting circuit that can be programmed in-situ by a set of microwave drives to perform reciprocal and non-reciprocal frequency

Investigating Bias in Maximum Likelihood Quantum State Tomography

February 8, 2017
Author(s)
Scott C. Glancy, Hilma M. Vasconcelos, George B. Silva
Maximum likelihood quantum state tomography yields estimators that, in spite of the fact that they are consistent, may have bias. The bias of an estimator is the difference between the expected value of the estimate and the true value of the parameter

Enriching and purifying silicon epilayers for quantum information

December 6, 2016
Author(s)
Joshua M. Pomeroy, Kevin J. Dwyer, Ke Tang, Hyun S. Kim, Aruna N. Ramanayaka, David S. Simons
High quality, enriched silicon contains an exceptionally low density of defects and unpaired electron and nuclear spins that allow candidate qubits (single donors or quantum dots) to exhibit very long dephasing times compared to silicon with a natural

Entangling distant resonant exchange qubits via circuit quantum electrodynamics

November 16, 2016
Author(s)
Jacob M. Taylor, Vanita Srinivasa, Charles Tahan
We investigate a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a super- conducting transmission line resonator. By analyzing three

Cascaded emission of single photons from the biexciton in monolayered WSe2

November 10, 2016
Author(s)
Yu-Ming He, Oliver Iff, Nils Lundt, Vasilij Baumann, Marcelo I. Davanco, Kartik Srinivasan, Sven Hofling, Christian Schneider
Monolayers of transition metal dichalcogenide materials emerged as a new material class to study excitonic effects in solid state. They benefit from the enormous coulomb correlations between electrons and holes, as a result of reduced dielectric screening

Heralding single photons from a high-Q silicon microdisk

November 10, 2016
Author(s)
Xiyuan Lu, Steven Rogers, Thomas Gerrits, Wei Jiang, Sae Woo Nam, Qiang Lin
Integrated quantum photonics has recently attracted considerable attention due to the promise of realizing chip-scale quantum information processing with unprecedented capability and complexity. Their implementation relies essentially on a high-quality

Double Quantum Dot Floquet Gain Medium

November 7, 2016
Author(s)
Jacob M. Taylor, Michael Gullans, Jason Petta, J. Stehlik, Yinyiu Liu, Christopher Eichler, T Hartke, X Mi
A qubit coupled to a microwave resonator allows the study of fundamental light-matter interactions at the level of single photons1. The paradigm of circuit quantum electrodynam- ics (cQED) enables the generation of classical and non-classical light2–5

Origin and Reduction of 1=f Magnetic Flux Noise in Superconducting Devices

October 18, 2016
Author(s)
P Kumar, David P. Pappas, Robert Mcdermott, J.W. Freeland, Clare Yu, M Beck, Hui Wang, Ruqian Wu
Magnetic flux noise is a dominant source of dephasing and energy relaxation in superconducting qubits. The noise power spectral density varies with frequency as 1=f^α, with α ≲ 1, and spans 13 orders of magnitude. Recent work indicates that the noise is

Non-equilibrium Transport of Light

October 16, 2016
Author(s)
Jacob M. Taylor, Chiao-Hsuan Wang
Understanding the behavior of light in non-equilibrium scenarios underpins much of quantum optics and optical physics. While lasers provide a severe example of a non-equilibrium problem, recent interests in the near-equilibrium physics of photon `gases'

Adiabatic Optimization versus Diffusion Monte Carlo

October 13, 2016
Author(s)
Stephen P. Jordan, Michael Jarret, Brad Lackey
Most experimental and theoretical studies of adiabatic optimization use stoquastic Hamiltonians, whose ground states are expressible using only real nonnegative amplitudes. This raises a question as to whether classical Monte Carlo methods can simulate

Framework for learning agents in quantum environments

September 22, 2016
Author(s)
Jacob M. Taylor, Hans Briegel, Vedran Dunjko
In this paper we provide a broad framework for describing learning agents in general quantum environments. We analyze the types of environments which allow for quantum enhancements in learning, by contrasting environments to quantum oracles. We show that

Code-division-multiplexed readout of large arrays of TES microcalorimeters

September 15, 2016
Author(s)
Kelsey M. Morgan, Bradley K. Alpert, Douglas A. Bennett, William B. Doriese, Joseph W. Fowler, Johnathon D. Gard, Gene C. Hilton, Kent D. Irwin, Young Il Joe, Galen C. O'Neil, Carl D. Reintsema, Edward V. Denison, Daniel R. Schmidt, Joel N. Ullom, Daniel S. Swetz
Code-division multiplexing (CDM) offers a path to reading out large arrays of transition edge sensor (TES) X-ray micro-calorimeters with excellent energy and timing resolution. We demonstrate the readout of X-ray TESs with a 32-channel flux-summed code
Displaying 351 - 375 of 870