Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 76 - 100 of 1595

Rydberg Engineering: Recent Techniques for Sensitive Field Measurements

February 9, 2023
Author(s)
Drew Rotunno, Nik Prajapati, Samuel Berweger, Aly Artusio-Glimpse, MATTHEW SIMONS, chris holloway, Amy Robinson
Highly-excited Rydberg atoms have been used for International System of Unit (SI)-traceable radio-frequency (RF) electric field and power measurements, but are limited in sensitivity to order 100 $\mu$V/m/$\sqrtHz}$ by noise and linewidth issues. These

All optical operation of a superconducting photonic interface

February 2, 2023
Author(s)
Frederik Thiele, Thomas Hummel, Adam McCaughan, Julian Brockmeier, Maximilian Protte, Victor Quiring, Sebastian Lengeling, Christof Eigner, Christine Silberhorn, Tim Bartley
Advanced electro-optic processing combines electrical control with optical modulation and detection. For quan-tum photonic applications these processes need to be carried out at the single photon level with high efficiencyand low decoherence. Integrated

2022 Topical Meeting on Optical Interference Coatings: Manufacturing Problem Contest

January 11, 2023
Author(s)
Catherine Cooksey, Daniel Poitras, Luke Sandilands, Penghui Ma, Stacey Lee, Michael Jacobson
Participants to the 2022 Manufacturing Contest were challenged to fabricate an optical filter with a specified stepped transmittance spanning three orders of magnitude from 400 nm to 1100 nm. The problem required that contestants be equally versed in the

Dark solitons in Bose-Einstein condensates: a dataset for many-body physics research

December 21, 2022
Author(s)
Amilson R. Fritsch, Shangjie Guo, Sophia Koh, Ian Spielman, Justyna Zwolak
We establish a dataset of over 1.6 x 10^4 experimental images of Bose–Einstein condensates containing solitonic excitations to enable machine learning (ML) for many-body physics research. About 33 % of this dataset has manually assigned and carefully

Spatial frequency domain Mueller matrix imaging

December 14, 2022
Author(s)
Joseph Chue-Sang, Maritoni Litorja, Aaron Goldfain, Thomas A. Germer
Significance: Mueller matrix polarimetry (MMP) and spatial frequency domain imaging (SFDI) are wide-field optical imaging modalities that differentiate tissue primarily by structure alignment and photon transport coefficient, respectively. Because these

Ultra-low loss quantum photonic circuits integrated with single quantum emitters

December 12, 2022
Author(s)
Ashish Chanana, Hugo Larocque, Renan Moreira, Jacques Carolan, Biswarup Guha, Emerson Goncalves De Melo, Vikas Anant, Jin Dong Song, Dirk Englund, Daniel Blumenthal, Marcelo Davanco, Kartik Srinivasan
Photon-based photonic quantum information systems require both scalable ultra-low loss photonic circuits and high-flux sources of single-photons. Direct integration of these sources and circuits is critical to realizing quantum systems that are scalable

Physics-based Models for photonic thermometers

December 1, 2022
Author(s)
Zeeshan Ahmed
Resistance thermometry, meticulously developed over the last century, provides a time-tested method for taking temperature measurements. However, fundamental limits to resistance-based approaches along with a desire to reduce the cost of sensor ownership

Quadrature Squeezing And Temperature Estimation From The Fock Distribution

November 3, 2022
Author(s)
Italo Pereira Bezerra, Hilma Vasconcelos, Scott Glancy
We present a method to estimate the amount of squeezing and temperature of a single-mode Gaussian harmonic oscillator state based on the weighted least squares estimator applied to measured Fock state populations. Squeezing and temperature, or equivalently

The time-programmable frequency comb and its use in quantum-limited ranging

October 27, 2022
Author(s)
Emily Caldwell, Laura Sinclair, Nathan R. Newbury, Jean-Daniel Deschenes
Two decades after its invention, the frequency comb is an unparalleled ruler for frequency, time, and distance metrology due to the rigid spacing of its optical output. Here, in contrast, we demonstrate a programable frequency comb by combining self

Hyperspectral photon-counting optical time domain reflectometry

October 4, 2022
Author(s)
Anouar Rahmouni, Samprity Saha, Oliver T. Slattery, Thomas Gerrits
Optical time-domain reflectometry (OTDR) is one of the most used techniques for nondestructive characterization of optical fiber links. Although conventional OTDR exhibits good performance in classical network applications, photoncounting OTDR (ν-OTDR)

Towards entangled photon pair generation from SiC-based microring resonator

October 4, 2022
Author(s)
Anouar Rahmouni, Lijun Ma, Xiao Tang, Thomas Gerrits, Lutong Cai, Qing Li, Oliver T. Slattery
Entangled photon sources are fundamental building blocks for quantum communication and quantum networks. Recently, silicon carbide emerged as a promising material for integrated quantum devices since it is CMOS compatible with favorable mechanical

Extremely broadband calibrated bolometers and microbolometer arrays for Earth radiation budget measurements

September 30, 2022
Author(s)
Michelle Stephens, Chris Yung, Nathan Tomlin, Dave Harber, Cameron Straatsma, Atasi Dan, Erica Freire Antunes, Peter Pilewskie, Odele Coddington, John H. Lehman
The Earth radiation budget, a 40-year data record of the balance between solar radiation reaching the Earth and the amount absorbed, reflected, and emitted from the Earth, is a key climate record for determining whether the Earth is warming or cooling. The
Displaying 76 - 100 of 1595