Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 126 - 150 of 1111

Proof-of-Principle Experiment for Testing Strong-Field Quantum Electrodynamics with Exotic Atoms: High Precision X-Ray Spectroscopy of Muonic Neon

April 27, 2023
Author(s)
Douglas Bennett, W.Bertrand (Randy) Doriese, Malcolm Durkin, Joseph Fowler, Johnathon Gard, Gene C. Hilton, Kelsey Morgan, Galen O'Neil, Carl D. Reintsema, Dan Schmidt, Daniel Swetz, Joel Ullom, Takuma Okumura
To test the bound-state quantum electrodynamics (BSQED), we have performed high precision x- ray spectroscopy of the 5g→4f and 5f→4d transitions (BSQED contribution of 2.4 eV and 5.2 eV, respectively) of muonic neons in the low-pressure gas phase under the

Trap-Integrated Superconducting Nanowire Single-Photon Detectors with Improved RF Tolerance for Trapped-Ion Qubit State Readout

April 24, 2023
Author(s)
Benedikt Hampel, Daniel Slichter, Dietrich Leibfried, Richard Mirin, Sae Woo Nam, Varun Verma
State readout of trapped-ion qubits with trap-integrated detectors can address important challenges for scalable quantum computing, but the strong radio frequency (rf) electric fields used for trapping can impact detector performance. Here, we report on

Quantum back-action limits in dispersively measured Bose-Einstein condensates

April 8, 2023
Author(s)
Ian Spielman, Emine Altuntas
A fundamental tenet of quantum mechanics is that measurements change a system's wavefunction to that most consistent with the measurement outcome, even if no observer is present. Weak measurements produce only limited information about the system, and as a

Lower Bounds on Quantum Annealing Times

April 5, 2023
Author(s)
Luis Pedro Garcia-Pintos, Lucas Brady, Jacob Bringewatt, Yi-Kai Liu
The adiabatic theorem provides sufficient conditions for the time needed to prepare a target ground state. While it is possible to prepare a target state much faster with more general quantum annealing protocols, rigorous results beyond the adiabatic

Integrating planar photonics for multi-beam generation and atomic clock packaging on chip

April 3, 2023
Author(s)
Chad Ropp, Wenqi Zhu, Alexander Yulaev, Daron Westly, Gregory Simelgor, Akash Rakholia, William Lunden, Dan Sheredy, Martin Boyd, Scott Papp, Amit Agrawal, Vladimir Aksyuk
The commercialization of atomic technologies requires replacing laboratory-scale laser setups with compact and manufacturable optical platforms. Complex arrangements of free-space beams can be generated on chip through a combination of integrated photonics

Toward improved quantum simulations and sensing with trapped two-dimensional ion crystals via parametric amplification

March 29, 2023
Author(s)
Matthew Affolter, Wenchao Ge, Bryce Bullock, Shaun Burd, Kevin Gilmore, Jennifer Lilieholm, Allison Carter, John J. Bollinger
Improving coherence is a fundamental challenge in quantum simulation and sensing experiments with trapped ions. Here we discuss, experimentally demonstrate, and estimate the potential impacts of two different protocols that enhance, through motional

Interference induced anisotropy in a two-dimensional dark state optical lattice

March 27, 2023
Author(s)
Ian Spielman, Gediminas Juzeliunas, Edvinas Gvozdiovas
We describe a two-dimensional optical lattice for ultracold atoms with spatial structure below the diffraction limit created by a bichromatic optical standing wave. At every point in space these fields couple the internal atomic states in a three-level

Determination of electron beam energy in measuring the electron-impact ionization cross section of He-like Fe24+

March 17, 2023
Author(s)
Yuri Ralchenko, Galen O'Neil, Paul Szypryt, Joseph N. Tan, Aung S. Naing, Yang Yang, Dipti Dipti, Amy Gall, Adam Hosier, David Schultz, Randall Smith, Nancy Brickhouse, Endre Takacs
In an effort to measure electron-impact ionization (EII) cross sections of He-like $Fe^24+}$ at the electron beam ion trap (EBIT) facility of the National Institute of Standards and Technology (NIST), we have experimentally determined the corrections to
Displaying 126 - 150 of 1111