Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 201 - 225 of 260

Learning to predict crystal plasticity at the nanoscale: Deep residual networks and size effects in uniaxial compression discrete dislocation simulations

May 19, 2020
Author(s)
Zijiang Yang, Stefanos Papanikolaou, Andrew C. Reid, Wei-keng Lao, Alok Choudhary, Carelyn E. Campbell, Ankit Agrawal
The increase of dislocation density in a metallic crystal undergoing plastic deformation influences the mechanical properties of the material. This effect can be used to examine the related inverse problem of deducing the prior deformation of a material

The 2019 NIST Audio-Visual Speaker Recognition Evaluation

May 18, 2020
Author(s)
Seyed Omid Sadjadi, Craig S. Greenberg, Elliot Singer, Douglas A. Reynolds, Lisa Mason, Jaime Hernandez-Cordero
In 2019, the U.S. National Institute of Standards and Technology (NIST) conducted the most recent in an ongoing series of speaker recognition evaluations (SRE). There were two components to SRE19: 1) a leaderboard style Challenge using unexposed

The 2019 NIST Speaker Recognition Evaluation CTS Challenge

May 18, 2020
Author(s)
Seyed Omid Sadjadi, Craig S. Greenberg, Elliot Singer, Douglas Reynolds, Lisa Mason, Jaime Hernandez-Cordero
In 2019, the U.S. National Institute of Standards and Technology (NIST) conducted a leaderboard style speaker recognition challenge using conversational telephone speech (CTS) data extracted from the unexposed portion of the Call My Net 2 (CMN2) corpus

Approaches to Training Multi-Class Semantic Image Segmentation of Damage in Concrete

May 14, 2020
Author(s)
Peter Bajcsy, Steven B. Feldman, Michael P. Majurski, Kenneth A. Snyder, Mary C. Brady
This paper addresses the problem of creating a large quantity of high-quality training image segmentation masks from scanning electron microscopy (SEM) images of concrete samples that exhibit progressive amounts of degradation resulting from alkali-silica

Prevention of Cooktop Ignition Using Detection and Multi-Step Machine Learning Algorithms

May 8, 2020
Author(s)
Wai Cheong Tam, Eugene Yujun Fu, Amy E. Mensch, Anthony P. Hamins, Christina Yu, Grace Ngai, Hong va Leong
This paper presents a study to examine the potential use of machine learning models to build a real-time detection algorithm for prevention of kitchen cooktop fires. Sixteen sets of time- dependent sensor signals were obtained from 60 normal/ignition

Streaming Batch Gradient Tracking for Neural Network Training

April 3, 2020
Author(s)
Siyuan Huang, Brian D. Hoskins, Matthew W. Daniels, Mark D. Stiles, Gina C. Adam
Faster and more energy efficient hardware accelerators are critical for machine learning on very large datasets. The energy cost of performing vector-matrix multiplication and repeatedly moving neural network models in and out of memory motivates a search

Auto-tuning of double dot devices it in situ with machine learning

March 31, 2020
Author(s)
Justyna Zwolak, Thomas McJunkin, Sandesh Kalantre, J. P. Dodson, Evan MacQuarrie, D. E. Savage, M. G. Lagally, S N. Coppersmith, Mark A. Eriksson, Jacob Taylor
The current practice of manually tuning quantum dots (QDs) for qubit operation is a relatively time- consuming procedure that is inherently impractical for scaling up and applications. In this work, we report on the \it in situ} implementation of a

Summary: Workshop on Machine Learning for Optical Communication Systems

March 26, 2020
Author(s)
Joshua A. Gordon, Abdella Battou, Michael P. Majurski, Dan Kilper, Uiara Celine, Massimo Tonatore, Joao Pedro, Jesse Simsarian, Jim Westdorp, Darko Zibar
Optical communication systems are expected to find use in new applications that require more intelligent and automated functionality. Optical networks are needed to address the high speeds and low latency of 5G wireless networks. The analog nature of

Workshop on Machine Learning for Optical Communication Systems: a summary

March 8, 2020
Author(s)
Joshua A. Gordon, Abdella Battou, Dan Kilper
A summary and overview of a public workshop on machine learning for optical Communication systems held on August 2nd 2019, by the Communications Technology Laboratory at the National Institute of Standards and Technology in Boulder, CO.

Energy-efficient stochastic computing with superparamagnetic tunnel junctions

March 5, 2020
Author(s)
Matthew W. Daniels, Advait Madhavan, Philippe Talatchian, Alice Mizrahi, Mark D. Stiles
Stochastic computing has been limited by the inaccuracies introduced by correlations between the pseudorandom bitstreams used in the calculation. We hybridize a stochastic version of magnetic tunnel junctions with basic CMOS logic gates to create a

Ray-based classification framework for high-dimensional data

February 3, 2020
Author(s)
Justyna Zwolak, Jacob Taylor, Sandesh Kalantre, Thomas McJunkin, Brian Weber
While classification of arbitrary structures in high dimensions may require complete quantitative information, for simple geometrical structures, low-dimensional qualitative information about the boundaries defining the structures can suffice. Rather than

Role of non-linear data processing on speech recognition task in the framework of reservoir computing

January 15, 2020
Author(s)
Flavio Abreu Araujo, Mathieu Riou, Jacob Torrejon, Sumito Tsunegi, Damien Querlioz, K. Yakushiji, Akio Fukushima, Hitoshi Kubota, Shinji Yuasa, Mark D. Stiles, Julie Grollier
The reservoir computing neural network architecture is widely used to test hardware systems for neuromorphic computing. One of the preferred tasks for bench-marking such devices is automatic speech recognition (ASR). However, this task requires acoustic

BowTie - a deep learning feedforward neural network for sentiment analysis

January 3, 2020
Author(s)
Apostol T. Vassilev
How to model and encode the semantics of human-written text and select the type of neural network to process it are not settled issues in sentiment analysis. Accuracy and transferability are critical issues in machine learning in general. These properties

Towards Edge-Based Deep Learning in Industrial Internet of Things

January 1, 2020
Author(s)
Fan Liang, Wei Yu, Xing Lu, David W. Griffith, Nada T. Golmie
As a typical application of the Internet of Things (IoT), the Industrial Internet of Things (I- IoT) connects all the related IoT sensing and actuating devices ubiquitously so that the monitoring and control of numerous industrial systems can be realized

Cognitive Information Measurements: A New Perspective

December 1, 2019
Author(s)
Hamid Gharavi
From a traditional point of view, the value of information does not change during transmission. The Shannon information theory considers information transmission as a statistical phenomenon for measuring the communication channel capacity. However, in

Active Learning Yields Better Training Data for Scientific Named Entity Recognition

November 1, 2019
Author(s)
Roselyne B. Tchoua, Aswathy Ajith, Zhi Hong, Logan T. Ward, Kyle Chard, Debra Audus, Shrayesh N. Patel, Juan J. de Pablo
Despite significant progress in natural language processing, machine learning models require substantial expert-annotated training data to perform well in tasks such as named entity recognition (NER) and entity relations extraction. Furthermore, NER is
Displaying 201 - 225 of 260
Was this page helpful?