Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1 - 25 of 630

Revisiting collisional broadening of $^85}$Rb Rydberg levels: conclusions for vapor cell manufacture

March 13, 2025
Author(s)
Mingxin Lei, Stephen Eckel, Eric Norrgard, Nikunjkumar Prajapati, Alexandra Artusio-Glimpse, Matthew Simons, Christopher Holloway
Electrometry based on electromagnetically induced transparency (EIT) in alkali Rydberg vapor cells may suffer reduced sensitivity due to spurious line broadening effects, caused by surface charges, contaminant gases, or other manufacturing defects. In

Effect of ''glancing'' collisions in the cold atom vacuum standard

February 12, 2025
Author(s)
Stephen Eckel, Daniel Barker, James A. Fedchak, Jacek Klos, Julia Scherschligt, Eite Tiesinga
We theoretically investigate the effect of "glancing" collisions on the ultra-high-vacuum pressure readings of the cold-atom vacuum standard (CAVS), based on either ultracold $^7$Li or $^87}$Rb atoms. Here, glancing collisions are those collisions between

Cryogenic photonic resonator with 10-17/s drift

February 11, 2025
Author(s)
Wei Zhang, William Milner, Jun Ye, Scott Papp
Thermal noise is the predominant instability in the provision of ultrastable laser frequency by reference to a cavity. Reducing the thermal-noise limit of a cavity means either making it larger to spread thermal fluctuations, reducing the sensitivity of

International Comparison CCQM-P229: Pilot Study to Measure Absolute Line Intensities of Selected 12C16O Transitions

January 24, 2025
Author(s)
Joseph Hodges, Zachary Reed, Katarzyna Bielska, Manfred Birk, Ruimin Guo, Gang Li, Jeong Sik Lim, Daniel Lisak, Georg Wagner
We present primary spectroscopic measurements of line intensities in the 3-0 vibrational band of 12C16O. This international measurement campaign was organized under the auspices of the Consultative Committee for Amount of Substance (CCQM) and involved six

Primary quantum thermometry of mm-wave blackbody radiation via induced state transfer in Rydberg states of cold atoms

January 23, 2025
Author(s)
Noah Schlossberger, Andrew Rotunno, Stephen Eckel, Eric Norrgard, Dixith Manchaiah, Nikunjkumar Prajapati, Alexandra Artusio-Glimpse, Samuel Berweger, Matthew Simons, Dangka Shylla, William Watterson, Charles Patrick, Adil Meraki, Rajavardhan Talashila, Amanda Younes, David La Mantia, Christopher Holloway
Rydberg states of alkali-metal atoms are highly sensitive to electromagnetic radiation in the GHz-to-THz regime because their transitions have large electric dipole moments. Consequently, environmental blackbody radiation (BBR) can couple Rydberg states to

Lattice Light Shift Evaluations In a Dual-Ensemble Yb Optical Lattice Clock

January 22, 2025
Author(s)
Tobias Bothwell, Roger Brown, Benjamin Hunt, Jacob Siegel, Tanner Grogan, Youssef Hassan, Kyle Beloy, Andrew Ludlow, Kurt Gibble, Takumi Kobayashi, Marianna Safronova, Sergey Porsev
In state-of-the-art optical lattice clocks, beyond-electric-dipole polarizability terms lead to a break-down of magic wavelength trapping. In this Letter, we report a novel approach to evaluate lattice light shifts, specifically addressing recent

Towards Precision Spectroscopy of Antiprotonic Atoms for Probing Strong-field QED

January 15, 2025
Author(s)
Goncalo Baptista, Shikha Rathi, Michael Roosa, Quentin Senetaire, Jonas Sommerfeldt, Toshiyuki Azuma, Daniel Becker, Francois Butin, Ofir Eizenberg, Joseph Fowler, Hiroyuki Fujioka, Davide Gamba, Nabil Garroum, Mauro Guerra, Tadashi Hashimoto, Takashi Higuchi, Paul Indelicato, Jorge Machado, Kelsey Morgan, Francois Nez, Jason Nobles, Ben Ohayon, Shinji Okada, Daniel Schmidt, Daniel Swetz, Joel Ullom, Pauline Yzombard, Marco Zito, Nancy Paul
PAX (antiProtonic Atom X-ray spectroscopy) is a new experiment with the aim to test strong-field quantum electrodynamics (QED) effects by performing high-precision x-ray spectroscopy of antiprotonic atoms. By utilizing advanced microcalorimeter detection

Spectroscopy of photoionization from the 1E singlet state in nitrogen-vacancy centers in diamond

October 17, 2024
Author(s)
Sean Blakley, Thuc Mai, Stephen Moxim, Jason Ryan, Adam Biacchi, Angela Hight Walker, Robert McMichael
The 1E—1A1 singlet manifold of the negatively charged nitrogen vacancy (NV −) center in diamond plays a central role in the quantum information and quantum sensing applications of the NV − center. However, the energy of this manifold within the diamond

Fast Ground State to Ground State Separation of Small Ion Crystals

October 10, 2024
Author(s)
Tyler Gugliemo, Dietrich Leibfried, Stephen Libby, Daniel Slichter
Rapid separation of linear crystals of trapped ions into different subsets is critical for realizing trapped ion quantum computing architectures where ions are rearranged in trap arrays to achieve all-to-all connectivity between qubits. We introduce a

Path-integral calculation of the third dielectric virial coefficient of helium based on ab initio three-body polarizability and dipole surfaces

October 10, 2024
Author(s)
Giovanni Garberoglio, Allan H. Harvey, Jakub Lang, Michal Przybytek, Michal Lesiuk, Bogumil Jeziorski
We develop a surface for the electric dipole moment of three interacting helium atoms and use it, together with state-of-the-art potential and polarizability surfaces, to compute the third dielectric virial coefficient, Cε, for both 4He and 3He isotopes

Gated InAs quantum dots embedded in surface acoustic wave cavities for low-noise optomechanics

October 8, 2024
Author(s)
Zixuan Wang, Ryan DeCrescent, Poolad Imany, Joseph Bush, Sae Woo Nam, Richard Mirin, Kevin L. Silverman
Self-assembled InAs quantum dots (QDs) are promising optomechanical elements due to their excellent photonic properties and sensitivity to local strain fields. Microwave-frequency modulation of photons scattered from these efficient quantum emitters has

Cryogenic Sapphire Optical Reference Cavity with 1 x 10^-16 fractional instability

October 2, 2024
Author(s)
Jose Valencia, George Iskandr, Nicholas Nardelli, David Leibrandt, David Hume
The frequency stability of a laser locked to an optical reference cavity is fundamentally limited by thermal noise in the cavity length, caused by local thermal fluctuations of the strain and index of refraction of the cavity components. These fluctuations

Rydberg states of alkali atoms in atomic vapor as SI-traceable field probes and communications receivers

September 16, 2024
Author(s)
Noah Schlossberger, Samuel Berweger, Nikunjkumar Prajapati, Andrew Rotunno, Alexandra Artusio-Glimpse, Matthew Simons, Abrar Sheikh, Eric Norrgard, Stephen Eckel, Christopher Holloway
Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large polarizabilities for static fields and large transition dipole moments for time-varying fields. Over the

Calibration of Autler-Townes based electrometry in Rydberg states of alkali atoms

August 30, 2024
Author(s)
Noah Schlossberger, Nikunjkumar Prajapati, Alexandra Artusio-Glimpse, Samuel Berweger, Matthew Simons, William Watterson, Dangka Shylla, Christopher Holloway
Highly excited states of alkali atoms are a powerful tool for making SI-traceable electric field measurements without the need for an external reference. However, the calibration of these measurements suffers from ambiguity in which transition dipole

Wafer-scale fabrication of evacuated alkali vapor cells

August 28, 2024
Author(s)
Yang Li, Matthew Hummon, Susan Schima, John Kitching, DONGGYU SOHN
We describe a process for fabricating a wafer-scale array of alkali metal vapor cells with low residual gas pressure. We show that by etching long, thin channels between the cells on the Si wafer surface, the residual gas pressure in the evacuated vapor

Spectroscopy of laser cooling transitions in MgF

August 23, 2024
Author(s)
Nickolas Pilgram, Benjamin Baldwin, David La Mantia, Stephen Eckel, Eric Norrgard
We measure the complete set of transition frequencies necessary to laser cool and trap MgF molecules. Specifically, we report the frequency of multiple low $J$ transitions of the $X^2\Sigma^+(v^\prime\prime}=0,1) \rightarrow A^2\Pi_1⁄2(v^\prime=0)$, $X^2

Electromagnetically-Induced-Transparency Cooling with a Tripod Structure in a Hyperfine Trapped Ion with Mixed-Species Crystals

August 22, 2024
Author(s)
Jenny Wu, Pan-Yu Hou, Stephen Erickson, Adam Brandt, Yong Wan, Giorgio Zarantonello, Daniel Cole, Andrew C. Wilson, Daniel Slichter, Dietrich Leibfried
Cooling of atomic motion is a crucial tool for many branches of atomic physics, ranging from fundamental physics explorations to quantum information and sensing. For trapped ions, electromagnetically-induced-transparency (EIT) cooling has received

Clock-line-mediated Sisyphus Cooling

July 31, 2024
Author(s)
Jacob Siegel, Benjamin Hunt, Tanner Grogan, Youssef Hassan, Kyle Beloy, Roger Brown, Andrew Ludlow, Chun-Chia Chen, Kurt Gibble
We demonstrate sub-recoil Sisyphus cooling using the long-lived 3P0 clock state in alkaline-earthlike ytterbium. A 1388 -nm optical standing wave nearly resonant with the 3P0→3D1 transition creates a spatially periodic light shift of the 3P0 clock state

Opportunities for Fundamental Physics Research with Radioactive Molecules

July 12, 2024
Author(s)
Michail Athanasakis-Kaklamanakis, Mia Au, Jochen Ballof, Robert Berger, Anastasia Borschevsky, Alexander Breier, Dmitry Budker, Luke Caldwell, Christopher Charles, Vincenzo Cirigliano, Jordy de Vries, David DeMille, Jacek Jacek Dobaczewski, Ch. E. Dullmann, Ephraim Eliav, Ephraim Eliav, Jonathan Engel, Mingyu Fan, Victor Flambaum, Alyssa Gaiser, Ronald Garcia Ruiz, Konstantin Gaul, Thomas Geisen, Alexander Gottberg, Gerald Gwinner, Reinhard Heinke, Steven Hoekstra, Jason Holt, Nicholas Hutzler, Andrew Jayich, Stephan Malbrunot-Ettenauer, Takayuki Miyagi, Iain Moore, Petr Navratil, Witold Nazarewicz, Gerda Neyens, Eric Norrgard, Nicholas Nusgart, Lukas Pasteka, Roy Ready, Moritz Pascal Reiter, Mikael Reponen, Sebastian Rothe, Marianna Safronova, Andrea Shindler, Jaideep Singh, Leonid Skripnikov, Silviu-Marian Udrescu, Shane Wilkins
Radioactive molecules hold great promise for their discovery potential in diverse fields. The extreme nuclear properties of heavy, short-lived nuclei and the intrinsic sensitivity, flexibility, and quantum control opportunities available to molecules make
Displaying 1 - 25 of 630