Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Donald R. Burgess Jr. (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 114

Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons

December 16, 2015
Author(s)
Thomas C. Allison, Donald R. Burgess Jr.
Polycyclic aromatic hydrocarbons (PAHs) are molecules that exist on earth due to natural and man-made causes. They are a significant health concern as many PAH compounds are known to be carcinogenic. PAHs are generally thermodynamically stable and

A Chemical Kinetic Mechanism for 2-Bromo-3,3,3-trifluoropropene (2-BTP) Flame Inhibition

July 22, 2015
Author(s)
Donald R. Burgess Jr., Valeri I. Babushok, Gregory T. Linteris, Jeffrey A. Manion
The present paper is concerned with the development of a detailed chemical kinetic mechanism to describe the flame inhibition chemistry of the fire suppressant 2-bromo-3,3,3-trifluoropropene (2-BTP). Currently 2-BTP is considered as a fire suppressant to

Data Formats for Elementary Gas Phase Kinetics: Part 3. Reaction Classification

April 20, 2015
Author(s)
Donald R. Burgess Jr., Jeffrey A. Manion, Carrigan J. Hayes
A method denoted InChI ER has been developed to describe and identify elementary reactions in a standard computer-readable notation by extending the IUPAC International Chemical Identifier (InChI) formalism. Five additional hierarchical InChI ER layers

Hydrocarbon Flame Inhibition by C3H2F3Br (2-BTP)

November 14, 2014
Author(s)
Valeri I. Babushok, Gregory T. Linteris, Donald R. Burgess Jr., Patrick T. Baker
The kinetic mechanism of hydrocarbon flame inhibition by the potential halon replacement 2-BTP has been assembled, and is used to study its effects on premixed methane-air flames. Simulations with varying CH4-air stoichiometry and agent loading have been

Modeling of 2-bromotrifluoropropene flame inhibition

August 14, 2014
Author(s)
Donald R. Burgess Jr., Jeffrey A. Manion, Valeri I. Babushok, Gregory T. Linteris
We developed a new chemical mechanism for modeling flame inhibition by 2-bromotrifluoropene (2-BTP). The modeling results qualitatively predicted agent behavior in cup-burner and FAA Aerosol Can tests over a wide range of conditions. The ban on igh ozone

Alkylperoxy Radical Photochemistry in Organic Aerosol Formation Processes

December 9, 2013
Author(s)
Alicia Kalafut-Pettibone, Joseph Klems, Donald R. Burgess Jr., William S. McGivern
Recent studies have shown that 254 nm light can be used to generate organic aerosol from iodoalkane/air mixtures via photodissociation of the C−I bond and subsequent oxidation of the single radical isomer. We examine organic aerosol formed from 1