Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by:

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 76 - 100 of 199

MEMS Microhotplate Temperature Sensor BIST: Importance and Applications

November 3, 2010
Author(s)
Muhammad Y. Afridi, Jon C. Geist
This paper describe the importance of temperature sensor built-in self test (BIST) for microhotplate based sensors. It shows possible ways to implement BIST functionality for microhotplate temperature sensor, including Resistance Temperature Detectors (RTD

MEMS Young's Modulus and Step Height Measurements with Round Robin Results

September 30, 2010
Author(s)
Janet M. Cassard, Richard A. Allen, Craig D. McGray, Jon C. Geist
This paper presents the results of a microelectromechanical systems (MEMS) Young s modulus and step height round robin experiment, completed in April 2009, which compares Young s modulus and step height measurement results at a number of laboratories. The

Separation and Metrology of Nanoparticles by Nanofluidic Size Exclusion

August 11, 2010
Author(s)
Samuel M. Stavis, Jon C. Geist, Michael Gaitan
A nanofluidic approach to the separation and metrology of nanoparticles is demonstrated. Advantages of this approach include nanometer-scale resolution, nanometer-scale to submicrometer-scale range, mitigation of hydrodynamic and diffusional limitations to

Accurate optical analysis of single molecule entrapment in nanoscale vesicles

January 1, 2010
Author(s)
Joseph E. Reiner, Andreas Jahn, Samuel M. Stavis, Michael J. Culbertson, Wyatt N. Vreeland, Daniel L. Burden, Jon C. Geist, Michael Gaitan
We present a non-destructive method to characterize low analyte concentrations in nanometer scale lipid vesicle formulations. Our method is based on the application of fluorescence fluctuation analysis (FFA) and multi-angle laser light scattering (MALLS)