Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: William D. Phillips (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 333

Advanced Laser Cooling for the Atomic Space Clock

October 12, 2021
Author(s)
V Boyer, L Lising, S L. Rolston, William D. Phillips
An atomic clock works by comparing the frequency of a local oscillator (a micrwave generator) with the hyperfine transition of the cesium atom at 9.2 GHz. In general, the precision of a clock is limited by the observation time. For an atomic clock, it is

Creation of Macroscopic Superposition States from Arrays of Bose-Einstein Condensates

October 12, 2021
Author(s)
J A. Dunningham, Karen G. Burnett, R Roth, William D. Phillips
We consider how macroscopic quantum superpositions may be created from arrays of Bose-Einstein condensates. We study a system of three condensates in Fock states, all with the same number of atoms and show that this has the form of a highly entangled

Bose Condensation of Photons Thermalized via Laser Cooling of Atoms

August 31, 2018
Author(s)
Chiao Wang, Michael Gullans, James V. Porto, William D. Phillips, Jacob Taylor
A Bose-Einstein condensate (BEC) is a quantum phase of matter achieved at low temperatures.Photons, one of the most prominent species of bosons, do not typically condense due to the lackof a particle number-conservation. We recently described a photon

Photon thermalization via laser cooling of atoms

July 19, 2018
Author(s)
Chiao-Hsuan Wang, Michael Gullans, James V. Porto, William D. Phillips, Jacob Taylor
The cooling of atomic motion by scattered light enables a wide variety of technological and scientific explorations. Here we focus on laser cooling from the perspective of the light — specifi- cally, the scattering of light between different optical modes

An introduction to the new SI

December 20, 2016
Author(s)
Peter J. Mohr, Sandra Knotts, William D. Phillips
Plans are underway to redefine the International System of Units (SI) around 2018. The new SI specifies the values of certain physical constants to define units. This article explains the new SI in a way that could be used to present it to high-school

Quantum and Classical Dynamics of BEC in a Large-Period Optical Lattice

April 4, 2016
Author(s)
Ian B. Spielman, Johnny H. Huckans, Bruno Laburthe-Tolra, James V. Porto, William D. Phillips
We experimentally investigate diffraction of a ^u87 Rb Bose-Einstein Condensate from a 1D optical lattice. We use a range of lattice periods and timescales, including those beyond the Raman-Nath limit. We compare the results to quantum mechanical and

Minimally destructive, Doppler measurement of a quantized, superfluid flow

February 1, 2016
Author(s)
Avinash Kumar, Neil Anderson, William D. Phillips, Stephen P. Eckel, Gretchen K. Campbell, Sandro Stringari
The Doppler effect, the shift in the frequency of sound due to motion, is present in both classical gases and quantum superfluids. Here, we perform an in-situ, minimally destructive measurement, of the persistent current in a ring-shaped, superfluid Bose

Gauge matters: Observing the vortex-nucleation transition in a Bose condensate

June 18, 2015
Author(s)
Ian B. Spielman, LeBlanc Lindsey, Karina Jimenez-Garcia, Ross Williams, Matthew Beeler, William D. Phillips
The order parameter of a quantum-coherent many-body system includes one or more phase degrees of freedom, which, owing to the phase information's relationship to velocity, can be accessed using time-of-flight (TOF) imaging. Here, trapped Bose-Einstein

Dimensionless units in the SI

June 1, 2015
Author(s)
Peter J. Mohr, William D. Phillips
The International System of Units (SI) is supposed to be coherent. That is, when a combination of units is replaced by an equivalent unit, there is no additional numerical factor. Here we consider dimensionless units as defined in the SI, e.g. angular

Hysteresis in Quantized Superfluid Atomtronic Circuit

February 14, 2014
Author(s)
Stephen P. Eckel, Jeffrey Lee, Fred Jendrzejewski, Noel Murray, Charles W. Clark, Christopher J. Lobb, William D. Phillips, Edwards Mark, Gretchen K. Campbell
Atomtronics is an emerging interdisciplinary field that seeks new functionality by creating devices and circuits where ultra-cold atoms play a role analogous to the electrons in electronics. Hysteresis in atomtronic circuits may prove to be a crucial