Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Mark R. Stoudt (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 136

Effect of austenite fraction and stability on strength-hardening-ductility in additively manufactured 17-4 PH stainless steel containing nitrogen

June 30, 2023
Author(s)
Saadi Habib, Steven P. Mates, Fan Zhang, Mark R. Stoudt, James Zuback, Olaf Borkiewicz
Additively-manufactured (AM) 17-4 precipitation-hardening (PH) martensitic stainless steel (SS) built from nitrogen-atomized powder often retains a large volume fraction of austenite. The retained austenite lowers the yield strength compared to both

Developing an Appropriate Heat Treatment Protocol for Additively Manufactured Alloy 718 for Oil and Gas Applications

March 23, 2023
Author(s)
Mark R. Stoudt, James Zuback, Carelyn E. Campbell, Maureen E. Williams, Kil-Won Moon, Carlos R. Beauchamp, Mark Yunovich
The combination of strength, corrosion resistance, and excellent weldability makes Alloy 718 an attractive alloy for additive manufacturing (AM) applications, but the AM build process generates considerable residual stresses, and large compositional and

How Austenitic is a Martensitic Steel Produced by Laser Powder Bed Fusion? A Cautionary Tale

December 2, 2021
Author(s)
Fan Zhang, Mark R. Stoudt, Souzan Hammadi, Carelyn E. Campbell, Eric A. Lass, Maureen E. Williams
Accurate phase fraction analysis is an essential element of microstructural characterization of alloys and often serves as a basis to quantify effects such as heat treatment or mechanical deformation. Additive manufacturing (AM) of metals, due to the

Solid-State Transformation of an Additive Manufactured Inconel 625 Alloy at 700 degC

September 23, 2021
Author(s)
Fan Zhang, Jan Ilavsky, Greta Lindwall, Mark R. Stoudt, Lyle E. Levine, Andrew J. Allen
Inconel 625, a nickel-based superalloy, has drawn much attention in the emerging field of additive manufacturing (AM) because of its excellent weldability and resistance to hot cracking. The extreme processing condition of AM often introduces enormous

Additive Manufacturing of Steels and Stainless Steels

August 1, 2020
Author(s)
Carelyn E. Campbell, Mark R. Stoudt, Fan Zhang
This work briefly reviews the classification of the different types of steels, the most common AM processes used for steel and the available powder feedstock. The characteristics of the as-built microstructure, including porosity, inclusions and residual

Location-specific Microstructure Characterization Within IN625 Additive Manufacturing Benchmark Test Artifacts

March 3, 2020
Author(s)
Mark R. Stoudt, Maureen E. Williams, Lyle E. Levine, Adam Abel Creuziger, Sandra A. Young, Jarred C. Heigel, Brandon Lane, Thien Q. Phan
Additive manufacturing (AM) of metals creates segregated microstructures with significant differences from those of traditional wrought alloys. Understanding how the local build conditions generate specific microstructures is essential for developing post

Outcomes and Conclusions from the 2018 AM-Bench Measurements, Challenge Problems, Modeling Submissions, and Conference

February 13, 2020
Author(s)
Lyle E. Levine, Brandon M. Lane, Jarred C. Heigel, Kalman D. Migler, Mark R. Stoudt, Thien Q. Phan, Richard E. Ricker, Maria Strantza, Michael R. Hill, Fan Zhang, Jonathan E. Seppala, Edward J. Garboczi, Erich D. Bain, Daniel Cole, Andrew J. Allen, Jason C. Fox, Carelyn E. Campbell
The Additive Manufacturing Benchmark Test Series (AM-Bench) was established to provide rigorous measurement test data for validating additive manufacturing (AM) simulations for a broad range of AM technologies and material systems. AM-Bench includes

Measurements of Melt Pool Geometry and Cooling Rates of Individual Laser Traces on IN625 Bare Plates

February 5, 2020
Author(s)
Brandon M. Lane, Jarred C. Heigel, Richard E. Ricker, Ivan Zhirnov, Vladimir Khromchenko, Jordan S. Weaver, Thien Q. Phan, Mark R. Stoudt, Sergey Mekhontsev, Lyle E. Levine
The complex physical nature of the laser powder bed fusion (LPBF) process warrants use of multiphysics computational simulations to predict or design optimal operating parameters or resultant part qualities such as microstructure or defect concentration

Phase Fraction and Evolution of Additively Manufactured 15-5 Stainless Steel and Inconel 625 AM- Benchmark Artifacts

August 5, 2019
Author(s)
Fan Zhang, Lyle E. Levine, Andrew J. Allen, Sandra A. Young, Maureen E. Williams, Mark R. Stoudt, Kil-Won Moon, Jarred C. Heigel, Jan Ilavsky
A proper understanding of the structure and microstructure of additive manufactured (AM) alloys is essential not only to the prediction and assessment of their material properties, but also to the validation and verification of computer models essential to