Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Garnett W. Bryant (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 338

Magneto-optics of a charge-tunable quantum dot: Observation of a negative diamagnetic shift

March 17, 2025
Author(s)
Giora Peniakov, A Beck, Eilon Poem, Zu-En Su, Boaz Taitler, Sven Hofling, Garnett Bryant, David Gershoni
We present magneto-optical studies of a self-assembled semiconductor quantum dot in neutral and positively charged states. The diamagnetic shifts and Zeeman splitting of many well identified optical transitions are precisely measured. Remarkably, a

Symmetry-breaking induced surface magnetization in non-magnetic RuO2

February 6, 2025
Author(s)
Garnett Bryant, Quoc Dai Ho, Quang To, Ruiqi Hu, Anderson Janotti
Altermagnetism is a newly identified phase of magnetism distinct from ferromagnetism and antiferromagnetism. RuO2 has been considered a prototypical metallic altermagnet with a critical temperature higher than room temperature. Previous interpretations of

Nagaoka ferromagnetism in 3 * 3 arrays and beyond

December 26, 2024
Author(s)
Yan Li, Keyi Liu, Garnett Bryant
Nagaoka ferromagnetism (NF) is a long-predicted example of itinerant ferromagnetism (IF) in the Hubbard model that has been studied theoretically for many years. The condition for NF, an infinite onsite Coulomb repulsion and a single hole in a half-filled

Data needs and challenges for quantum dot devices automation

October 31, 2024
Author(s)
Justyna Zwolak, Jacob Taylor, Reed Andrews, Jared Benson, Garnett Bryant, Donovan Buterakos, Anasua Chatterjee, Sankar Das Sarma, Mark Eriksson, Eliska Greplova, Michael Gullans, Fabian Hader, Tyler Kovach, Pranav S. Mundada, Mick Ramsey, Torbjoern Rasmussen, Brandon Severin, Anthony Sigillito, Brennan Undseth, Brian Weber
Gate-defined quantum dots are a promising candidate system for realizing scalable, coupled qubit systems and serving as a fundamental building block for quantum computers. However, present-day quantum dot devices suffer from imperfections that must be

Single-electron states of phosphorus-atom arrays in silicon

May 8, 2024
Author(s)
Maicol Ochoa, Keyi Liu, Michal Zielinski, Garnett W. Bryant
We characterize the single-electron energies and the wavefunction structure of arrays with two, three, and four phosphorus atoms in silicon by implementing atomistic tight-binding calculations and analyzing wavefunction overlaps to identify the single

Fermi-Level Pinning in ErAs Nanoparticles Embedded in III-V Semiconductors

April 9, 2024
Author(s)
Garnett W. Bryant, Ruiqi Hu, Dai Ho, Quang To, Anderson Janotti
Embedding rare-earth pnictide (RE-V) nanoparticles into III-V semiconductors enables unique optical, electrical, and thermal properties, with applications in THz photoconductive switches, tunnel junctions, and thermoelectric devices. Despite the high

Single-particle approach to many-body relaxation dynamics

February 26, 2024
Author(s)
Garnett W. Bryant, Marta Pelc, David Dams, Abhishek Ghosh, Miriam Kosik, Marvin Muller, Carsten Rockstuhl, Andres Ayuela, Karolina Slowik
This study addresses the challenge of modeling relaxation dynamics in quantum many-body systems, specifically focusing on electrons in graphene nanoflakes. While quantum many-body techniques effectively describe dynamics up to a few particles, these

Emerging Nontrivial Topology in Ultrathin Films of Rare-Earth Pnictides

October 23, 2023
Author(s)
Dai Ho, Ruiqi Hu, Quang To, Garnett Bryant, Anderson Janotti
Thin films of semimetals, such as rare-earth monopnictides, are expected to turn into semiconductors due to quantum confinement effect, which lifts the overlap between electron pockets at Brillouin zone edges and hole pockets at the zone center. Instead

Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots

November 11, 2022
Author(s)
Richard M. Silver, Jonathan Wyrick, Xiqiao Wang, Ranjit Kashid, Garnett W. Bryant, Albert Rigosi, Pradeep Namboodiri, Ehsan Khatami
The Hubbard model is one of the primary models for understanding the essential many-body physics in condensed matter systems such as Mott insulators and cuprate high-Tc superconductors. Due to the long-range Coulomb interactions, accessible low

Revising quantum optical phenomena in adatoms coupled to graphene nanoantennas

June 8, 2022
Author(s)
Garnett W. Bryant, Miriam Kosik, Marvin Muller, Karolina Slowik, Andres Ayuela, Carsten Rockstuhl, Marta Pelc
Graphene flakes acting as photonic nanoantennas sustain strong electromagnetic field localization and enhancement. To exploit the field enhancement, quantum emitters such as atoms or molecules should be positioned in such close proximity to the flake that

Strong coupling between a topological insulator and a III-V heterostructure at terahertz frequency

March 8, 2022
Author(s)
Garnett W. Bryant, D. Quang To, Zhengtianye Wang, Q. Dai Ho, Ruiqi Hu, Wilder Acuna, Yongchen Liu, Anderson Janotti, Joshua Zide, Stephanie Law, Matthew Doty
We probe theoretically the emergence of strong coupling in a system consisting of a topological insulator (TI) and a III-V heterostructure using a numerical approach based on the scattering matrix formalism. Speci cally, we investigate the interactions

Modification of the optical properties of molecular chains upon coupling to adatoms

December 13, 2021
Author(s)
Garnett W. Bryant, Marvin Muller, Miriam Kosik, Marta Pelc, Karolina Slowik, Andres Ayuela, Carsten Rockstuhl
Adsorbed atoms (adatoms) coupled to the matrix of solid state host materials as impurities can signi cantly modify their properties. Especially in low-dimensional materials, such as one-dimensional organic polymer chains or quasi-one-dimensional graphene

Efficient Computation of Optical Forces With the Coupled Dipole Method

October 12, 2021
Author(s)
P C. Chaumet, Adel Rahmani, A Sentenac, Garnett W. Bryant
We present computational techniques to compute in an efficient way optical forces on arbitrary nanoobjects using the coupled dipole method. We show how the time of computation can be reduced by several orders of magnitude with the help of fast-Fourier