Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: David B. Newell (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 156

Optimization of Wye-D-Type Quantum Hall Resistance Standard

August 30, 2024
Author(s)
Yanfei Yang, Dean G. Jarrett, Alireza Panna, Albert Rigosi, David B. Newell, Randolph Elmquist, Cheng Hsueh Yang, Ngoc Thanh Mai Tran
Theoretically wye-delta transformation can be used to realize ultra-high resistances up to PΩ. For graphene-based quantum Hall array resistance standards fabricated to utilize the wye-delta transformation, a few challenges present themselves, including the

Redetermination of the Gravitational Constant using the BIPM Torsion Balance

July 8, 2024
Author(s)
Stephan Schlamminger, Leon Chao, David B. Newell, Vincent Lee, Clive Speake
For the past several years, we have been using the torsion balance developed at the Bureau International des Poids et Mesures (BIPM) to measure the gravitational constant $G$. The most notable feature of the apparatus is that it allows the measurement of

The Quantum Electro-Mechanical Metrology Suite

March 27, 2024
Author(s)
Frank Seifert, Lorenz Keck, David B. Newell, Darine El Haddad
The National Institute of Standards and Technology (NIST) is building a robust open-source hardware and software Quantum Electro-Mechanical Metrology Suite (QEMMS) that can provide quantum voltage, resistance, current, mass, and force dissemination

Application of Electrical Standards to Torque Realization: A Device to Measure up to 1Nm

February 14, 2024
Author(s)
Zane Comden, Stephan Schlamminger, Frank Seifert, David B. Newell, Leon Chao
This paper describes the next generation prototype of the Electronic NIST Torque Realizer (ENTR) project. The first prototype version (ENTR-v1) has been able to realize low-range torques (on the order of 1×10-3 Nm) to uncertainties of less than 1000 parts

Roadmap towards the redefinition of the second

January 22, 2024
Author(s)
C Rieck, T Ido, M Wouters, Y Hanado, M Fujieda, PO Hedekvist, PE Pottie, J Bartholomew, J Hanssen, A Malimon, N Ashby, P Defraigne, Elizabeth Donley, I Sesia, H Schnatz, P Dube, N Dimarc, F Levi, H Margolis, S Slyusarev, M Yasuda, S Bize, D Calonico, David B. Newell, JP Uzan, M Gertsvolf, C Oates, E Peik, S Weyers, DH Yu, G Mileti, P Tavella, F Meynadier, G Petit, G Panfilo, F Fang, J Lodewyck
This paper outlines the roadmap towards the redefinition of the second recently updated by the CCTF Task Force created by the CCTF in 2020. The main achievements and the open challenges related to the status of the optical frequency standards, their

Graphene-Based Star-Mesh Resistance Networks

July 12, 2023
Author(s)
Dean G. Jarrett, Ching-Chen Yeh, Shamith Payagala, Alireza Panna, Yanfei Yang, Linli Meng, Swapnil Mhatre, Ngoc Thanh Mai Tran, Heather Hill, Dipanjan Saha, Randolph Elmquist, David B. Newell, Albert Rigosi

The design and performance of an electronic torque standard directly traceable to the revised SI

May 25, 2023
Author(s)
Zane Comden, John-Edward Draganov, Stephan Schlamminger, Frank Seifert, Charles Waduwarage Perera, David B. Newell, Leon Chao
The United States National Institute of Standards and Technology (NIST) has been developing a new device for primary standard realization of torque utilizing established trace- ability to the quantum-electrical International System of Units (SI) standards

Determination of the Gravitational Constant Using a BIPM Balance

December 12, 2022
Author(s)
Stephan Schlamminger, Leon Chao, Vincent Lee, David B. Newell, Clive Speake
With the torsion balance developed at the Bureau International des Poids et Mesures (BIPM), the Newtonian constant of gravitation, $G$, can be measured with two methods. In the Cavendish method, the external gravitational torque is obtained from the

A Macroscopic Mass From Quantum Behavior In An Integrated Approach

December 10, 2022
Author(s)
Frank Seifert, Alireza Panna, Lorenz Keck, Leon Chao, Shamith Payagala, Dean G. Jarrett, Dipanjan Saha, Randolph Elmquist, Stephan Schlamminger, Albert Rigosi, David B. Newell, Darine El Haddad
The revision of the International System of Units (SI) on May 20th, 2019, has enabled new improved experiments to consolidate and simplify electrical and mechanical metrology currently underway. Historically within the SI, the definition of energy was only

Precision Engineering For Gravitational Experiments

October 10, 2022
Author(s)
Stephan Schlamminger, Leon Chao, Vincent Lee, David B. Newell, Jon Pratt, Clive Speake
Four fundamental forces, or technically more correct interactions, are known in physics. The gravitational force is one of them and is a mysterious one. Gravity has an infinite range, just like the electromagnetic interaction. However, in contrast to

Design of an electrostatic feedback for an experiment to measure G

June 20, 2022
Author(s)
Stephan Schlamminger, Leon Chao, Vincent Lee, David B. Newell, Clive Speake
The torsion pendulum at the heart of the BIPM apparatus to measure the gravitational constant, $G$, is used to measure the gravitational torque between source and test-mass assemblies with two methods. In the Cavendish method, the pendulum moves freely. In