Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Jay H. Hendricks (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 95

Quantum for Pressure

January 5, 2018
Author(s)
Jay H. Hendricks, Patrick F. Egan, Jacob E. Ricker, Jack A. Stone Jr., Kevin O. Douglass, Gregory F. Strouse
A team of NIST scientists is working to fundamentally change the way that the unit of pressure is realized and disseminated, an effort that will lead to the elimination of mercury barometer pressure standards.

Perspectives for a new realization of the pascal by optical methods

October 24, 2017
Author(s)
Jay H. Hendricks, Karl Jousten, Jack A. Stone Jr., Patrick F. Egan, Tom Rubin, Christof Gaiser, Rene Schodel, James A. Fedchak, Jacob E. Ricker, Jens Fluegge, Stephen P. Eckel, Julia K. Scherschligt, Daniel S. Barker, Kevin O. Douglass, Gregory F. Strouse, Uwe Sterr, Waldimir Sabuga
Since the beginning of measurement of pressure in the 17th century, the unit of pressure has been defined by the relationship of force per unit area. The present state of optical technology now offers the possibility of using a thermodynamic definition

An integrated and automated calibration system for pneumatic piston gauges

October 17, 2017
Author(s)
Yuanchao Yang, Robert G. Driver, John S. Quintavalle, Julia Scherschligt, Katie M. Schlatter, Jacob Edmond Ricker, Gregory F. Strouse, Douglas A. Olson, Jay H. Hendricks
Recently, a transducer-aided crossfloat (TAC) method for pneumatic piston gauges was proposed. The concept is to use a pressure transducer as a very short-term transfer standard between the standard piston gauge and the test one. Different from the

Cell-based refractometer for pascal realization

July 24, 2017
Author(s)
Patrick F. Egan, Jack A. Stone Jr., Jacob E. Ricker, Jay H. Hendricks, Gregory F. Strouse
We describe a method for determining density of helium via measurements of optical refractivity. In combination with the equation of state, this allows realization of the pascal. Our apparatus is based on the integration of a gas triple-cell into a quasi

Stuck in a moment: A view from the MIRE

April 20, 2017
Author(s)
Patrick Egan, Jack A. Stone Jr., Jacob Edmond Ricker, Jay H. Hendricks
The next-generation pressure standards will be realized via gas density and the equation of state. One way to access the density is through a measurement of gas refractivity, underpinned by the theoretical calculations that predict the relationship between

Draft B Report on the Key Comparison CCM.P-K4.2012 in Absolute Pressure from 1 Pa to 10 kPa

December 7, 2016
Author(s)
Jacob E. Ricker, Jay H. Hendricks, Thomas Bock, Prazak Dominik, Tokihiko Kobata, Jorge Torres, Irina Sadkovskaya
This report summarizes the Consultative Committee for Mass (CCM) key comparison CCM.P-K4.2012 for absolute pressure spanning the range of 1 Pa to 10 000 Pa. The comparison was completed via calibration of a transfer standard carried out at six NMIs during

Laser Refractometer as a Transfer Standard of the Pascal

July 9, 2016
Author(s)
Patrick Egan, Jack A. Stone Jr., Jacob Edmond Ricker, Jay H. Hendricks
We have developed a new low pressure sensor which is based on the measurement of (nitrogen) gas refractivity inside a Fabry-Perot (FP) cavity. We compare pressure determinations via this laser refractometer to that of well-established ultrasonic manometers

MEASURING PRESSURE AND VACUUM WITH LIGHT: A NEW PHOTONIC, QUANTUM-BASED, PRESSURE STANDARD

September 3, 2015
Author(s)
Jay H. Hendricks, Jacob E. Ricker, Jack A. Stone Jr., Patrick F. Egan, Gregory E. Scace, Gregory F. Strouse, Douglas A. Olson, Donavon Gerty
The future of pressure and vacuum measurement will rely on lasers and Fabry-Perot optical cavities, and will be based on fundamental physics of light interacting with a gas. Light interacts at the quantum level with matter such that light travels at a

Performance of a dual Fabry-Perot cavity refractometer

August 18, 2015
Author(s)
Patrick F. Egan, Jack A. Stone Jr., Jay H. Hendricks, Jacob E. Ricker, Gregory E. Scace, Gregory F. Strouse
We have built and characterized a refractometer that utilizes two Fabry-Perot cavities formed on a dimensionally stable spacer. In the typical mode of operation, one cavity is held at vacuum and the other cavity is filled with nitrogen gas. The

In Search of Better Pressure Standards

August 1, 2014
Author(s)
Jay H. Hendricks, Jacob E. Ricker, Patrick F. Egan, Gregory F. Strouse
Based on highly accurate optical interferometry and fundamental quantum calculations, researchers at the National Institute of Standards and Technology (NIST) in the US are developing an improved definition of the SI unit for pressure that will consign the