Skip to main content
U.S. flag

An official website of the United States government

Search Publications by: Thomas W. LeBrun (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 62

Collision-resolved pressure sensing

April 11, 2024
Author(s)
Daniel Carney, Daniel Barker, Thomas W. LeBrun, David Moore, Jacob Taylor
Heat and pressure are ultimately transmitted via quantized degrees of freedom, like gas particles and phonons. While a continuous Brownian description of these noise sources is adequate to model measurements with relatively long integration times

Low-power, agile electro-optic frequency comb spectrometer for integrated sensors

March 11, 2024
Author(s)
Kyunghun Han, David Long, Sean Bresler, Junyeob Song, Yiliang Bao, Benjamin Reschovsky, Kartik Srinivasan, Jason J. Gorman, Vladimir Aksyuk, Thomas W. LeBrun
Sensing platforms based upon photonic integrated circuits have shown considerable promise; however, they require corresponding advancements in integrated optical readout technologies. Here, we present an on-chip spectrometer that leverages an integrated

Increased instantaneous bandwidth of Rydberg atom electrometry with an optical frequency comb probe

February 27, 2024
Author(s)
Aly Artusio-Glimpse, David Long, Sean Bresler, Nik Prajapati, Dangka Shylla, Andrew Rotunno, Matt Simons, Samuel Berweger, Noah Schlossberger, Thomas W. LeBrun, Christopher L. Holloway
We show that the use of a probe optical frequency comb leads to dramatically improved bandwidth (as high as 12+/-1 MHz) for the detection of modulated radio frequencies in Rydberg atom-based electrometry.

High accuracy, high dynamic range optomechanical accelerometry enabled by dual comb spectroscopy

September 20, 2023
Author(s)
David Long, Jasper Stroud, Benjamin Reschovsky, Yiliang Bao, Feng Zhou, Thomas W. LeBrun, David Plusquellic, Jason Gorman, Sean Bresler
Cavity optomechanical sensors offer exceptional sensitivity but interrogating the cavity motion with high accuracy and dynamic range has proven to be challenging. Here we employ a dual optical frequency comb spectrometer to readout a cavity optomechanical

Single-modulator, direct frequency comb spectroscopy via serrodyne modulation

February 3, 2023
Author(s)
David Long, Sean Bresler, Yiliang Bao, Benjamin Reschovsky, Thomas W. LeBrun, Jason J. Gorman
Traditional electro-optic frequency comb spectrometers rely upon the use of an acousto-optic modulator (AOM) to provide a differential frequency shift between probe and local oscillator (LO) legs of the interferometer. Here we show that these modulators

Intrinsically accurate sensing with an optomechanical accelerometer

May 18, 2022
Author(s)
Benjamin Reschovsky, David Long, Feng Zhou, Yiliang Bao, Richard A. Allen, Jason J. Gorman, Thomas W. LeBrun
We demonstrate a microfabricated optomechanical accelerometer that is capable of percent-level accuracy without external calibration. To achieve this capability, we use a mechanical model of the device behavior that can be characterized by the thermal

Broadband thermomechanically limited sensing with an optomechanical accelerometer

March 9, 2021
Author(s)
Feng Zhou, Yiliang Bao, Ramgopal Madugani, David Long, Jason J. Gorman, Thomas W. LeBrun
Cavity optomechanics has enabled precision measurements with unprecedented levels of sensitivity, including the detection of attonewton forces, nanoparticles, magnetic fields, and gravitational waves. In most cases, detection is performed in a narrow

Electro-optic frequency combs for rapid interrogation in cavity optomechanics

January 29, 2021
Author(s)
David Long, Benjamin J. Reschovsky, Feng Zhou, Yiliang Bao, Thomas W. LeBrun, Jason Gorman
Electro-optic frequency combs were employed to rapidly interrogate an optomechanical sensor, demonstrating spectral resolution substantially exceeding that possible with a mode-locked frequency comb. Frequency combs were generated using an integrated

A radial calibration window for analytical ultracentrifugation

July 20, 2018
Author(s)
Thomas W. LeBrun, Peter Schuck, Wei Ren, Justine Yoon, Xianghui Dong, Nicole Y. Morgan, Jeffrey Fagan, Huaying Zhao
Analytical ultracentrifugation (AUC) is a first-principles based method for studying particles in solution by monitoring the evolution of their radial concentration distribution as a function of time in the presence of a high centrifugal field. In

A Photonic MEMS Accelerometer with a Low-Finesse Hemispherical Microcavity Readout

August 13, 2017
Author(s)
Yiliang Bao, Feng Zhou, Thomas W. LeBrun, Jason J. Gorman
This paper describes the design, fabrication, and testing of a photonic MEMS accelerometer that uses a hemispherical microcavity to transduce the motion of the proof mass. The cavity design provides stable operation that is relatively tolerant of

Concave silicon micromirrors for stable hemispherical optical microcavities

June 23, 2017
Author(s)
Yiliang Bao, Feng Zhou, Thomas W. LeBrun, Jason J. Gorman
A detailed study of the fabrication of silicon concave micromirrors for hemispherical microcavities is presented that includes fabrication yield, surface quality, surface roughness, cavity depth, radius of curvature, and the aspect ratio between the cavity

An Optomechanical Accelerometer with a High-Finesse Hemispherical Optical Cavity

February 22, 2016
Author(s)
Yiliang Bao, Felipe Guzman, Arvind Balijepalli, John Lawall, Jacob Taylor, Thomas W. LeBrun, Jason J. Gorman
A new design for an optomechanical accelerometer is presented. The design includes a hemispherical optical cavity that can achieve high finesse and a proof mass that is well-constrained by silicon nitride beams. Based on previous work and analysis, the