Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Oliver T. Slattery (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 76 - 100 of 167

Efficient, low-noise, single-photon frequency conversion

June 9, 2013
Author(s)
Paulina S. Kuo, Jason S. Pelc, Oliver T. Slattery, Yong-Su Kim, M. M. Fejer, Xiao Tang
We demonstrate simultaneous low-noise and efficient frequency conversion in a periodically poled LiNbO3 waveguide with spectral filtering. We achieve >50% external conversion efficiency and 600 noise counts per second at peak conversion.

Frequency Correlated Bi-Photon Spectroscopy using a Tunable Up-Conversion Detector

May 21, 2013
Author(s)
Oliver T. Slattery, Lijun Ma, Paulina S. Kuo, Yong-Su Kim, Xiao Tang
We demonstrated a scheme for frequency correlated bi-photon spectroscopy using a strongly non- degenerate down-conversion source and a tunable up-conversion detector. In this scheme, the spectral function at one wavelength range of a remote object can be

Reducing noise in single-photon frequency conversion

April 10, 2013
Author(s)
Paulina S. Kuo, Jason S. Pelc, Oliver T. Slattery, Yong-Su Kim, Martin M. Fejer, Xiao Tang
We demonstrate low-noise and efficient frequency conversion using sum-frequency mixing in a periodically poled LiNbO3 (PPLN) waveguide. Using a 1556 nm pump, 1302 nm photons are efficiently converted to 709 nm photons. We obtain 70% conversion efficiency

Dual-channel, single-photon upconversion detector near 1300 nm

November 5, 2012
Author(s)
Paulina S. Kuo, Jason S. Pelc, Oliver T. Slattery, Martin M. Fejer, Xiao Tang
Upconversion of 1.3-micron photons and detection using silicon avalanche photodiodes (Si APDs) can produce high photon detection efficiencies (PDEs) with low dark count rates. We demonstrate a novel two-channel device based on a phase-modulated

Photon Temporal Correlations Measured Using a Dual-Channel Upconversion Detector

October 14, 2012
Author(s)
Paulina Kuo, Jason S. Pelc, Oliver T. Slattery, Martin M. Fejer, Xiao Tang
We demonstrate application of a dual-channel upconversion detector as a beamsplitter that preserves photon statistics. We use this beamsplitter to characterize temporal correlations of photons from coherent and pseudo-thermal sources.

Single photon frequency up-conversion and its applications

October 12, 2012
Author(s)
Lijun Ma, Oliver T. Slattery, Xiao Tang
The National Institute of Standards and Technology (NIST) has adapted a frequency up-conversion technique to develop highly efficient and sensitive single photon detectors and spectrometer for use at telecommunications wavelengths. The NIST team used these

Dual-channel, single-photon upconversion detector at 1.3 mm

August 3, 2012
Author(s)
Jason S. Pelc, Paulina Kuo, Oliver T. Slattery, Lijun Ma, Xiao Tang, Martin M. Fejer
We demonstrate efficient, single-photon upconversion detection of two wavelengths in the 1300-nm band. The upconversion detector is based on a phase-modulated, periodically poled LiNbO3 waveguide that simultaneously quasi-phasematches two sum-frequency

Dual-channel, single-photon upconversion detector at 1300 nm

August 3, 2012
Author(s)
Paulina Kuo, Jason S. Pelc, Oliver T. Slattery, Lijun Ma, Martin M. Fejer, Xiao Tang
We show a dual-channel, upconversion detector at 1.3-m-wavelength based on phasemodulated periodically poled LiNbO3, and use it for wavelength- to time-division multiplexing to achieve high data rates, useful for quantum key distribution.

Single Photon Detection Using Frequency Up-conversion with Pulse Pumping

September 1, 2011
Author(s)
Lijun Ma, Oliver T. Slattery, Xiao Tang
This chapter delivers a general overview of the theoretical and experimental results of single photon up-conversion detectors with pulse pumping. After a brief introduction, we provide a detailed coverage of several key applications of up-conversion