Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: James(Trey) Porto (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 182

Quadrature amplitude modulation for electronic side and Pound-Drever-Hall locking

September 13, 2024
Author(s)
Juntian Tu, Alessandro Restelli, Tsz-Chun Tsui, Kevin Weber, Ian Spielman, James(Trey) Porto, Steven Rolston, Sarthak Subhankar
The Pound-Drever-Hall (PDH) technique is routinely used to stabilize the frequency of a free-running laser to an ultralow expansion (ULE) reference cavity. The electronic sideband (ESB) locking scheme—a variant of the standard PDH locking scheme—helps

Dynamical Formation of Prethermal BEC in Floquet Engineered Lattice

June 3, 2024
Author(s)
James Maslek, Carlos Alberto Bracamontes Palma, James Porto
We experimentally realise an effective Hamiltonian with a continuously adjustable staggered gauge field for weakly interacting bosons in an optical lattice. Periodic driving realises a staggered $\Phi$-flux model, where $\Phi$ can be continuously tuned

Tunable three-body loss in a nonlinear Rydberg medium

May 5, 2021
Author(s)
James(Trey) Porto, Alexey Gorshkov, Michael Gullans, D. Ornelas-Huerta, Przemyslaw Bienias, A. Craddock, A. Hachtel, Marcin Kalinowski, Mary Lyon, Steven L. Rolston
Long-range Rydberg interactions, in combination with electromagnetically induced transparency(EIT), give rise to strongly interacting photons where the strength, sign, and form of the interactions are widely tunable and controllable. Such control can be

Coherent optical nano-tweezers for ultra-cold atoms

July 7, 2020
Author(s)
Przemek Bienias, Sarthak Subhankar, Yang Wang, Tsz-Chun Tsui, Fred Jendrzejewski, Tobias Tiecke, Gediminas Juzeliunas, Liang Jiang, Steven Rolston, James V. Porto, Alexey Gorshkov

Realization of a stroboscopic optical lattice for cold atoms with subwavelength spacing

June 9, 2020
Author(s)
TC Tsui, Yang Wang, Sarthak Subhankar, James V. Porto, Steve Rolston
Optical lattices are typically created via the ac-Stark shift, which are limited by diffraction to periodicities ≥ λ/2, where λ is the wavelength of light used to create them. Lattices with smaller periodicities may be useful for many-body physics with

Quantum interference between photons from an atomic ensemble and a remote atomic ion

November 18, 2019
Author(s)
A. Craddock, J. Hannegan, D. Ornelas-Huerta, J. Siverns, A. Hachtel, E. Goldschmidt, James V. Porto, Q. Quraishi, S. Rolston
Many remote-entanglement protocols rely on the generation and interference of photons produced by nodes within a quantum network. Quantum networks based on heterogeneous nodes provide a versatile platform by utilizing the complimentary strengths of the

Microcontroller based scanning transfer cavity lock with environmental compensation

April 22, 2019
Author(s)
Sarthak Subhankar, Alessandro Restelli, Yang Wang, Steve Rolston, James V. Porto
We present a compact, cost-effective, and all-digital implementation of a scanning transfer cavity lock (STCL) for long term laser frequency stabilization. An interrupt-based, event-centric state machine is employed to realize the STCL, with the capability

Nanoscale Atomic Density Microscopy

April 1, 2019
Author(s)
Sarthak Subhankar, Yang Wang, Tsz-Chun Tsui, Steven Rolston, James V. Porto
Quantum simulations with ultracold atoms typically create atomic wavefunctions with structure at optical length scales, where direct imaging suffers from the diffraction limit. In analogy to advances in optical microscopy for biological applications, we

Optical lattice with torus topology

September 26, 2018
Author(s)
Hwanmun Kim, Guanyu Zhu, James V. Porto, Mohammad Hafezi
We propose an experimental scheme to construct an optical lattice where the atoms are confined to the surface of a torus. This construction can be realized with spatially shaped laser beams which could be realized with recently developed high resolution