Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Jason J. Gorman (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 136

Frequency tunable label-free surface acoustic wave-based flow sensor

October 7, 2020
Author(s)
Aurore F. Quelennec, Jason J. Gorman, Darwin Reyes-Hernandez
We present a label-free SAW-based flow sensor with enhanced precision and repeatability. This sensor improves the signal-to-noise ratio by one order of magnitude (dB scale) at an optimized frequency, and lowers the measurable flow rate to 5 μL/min (from

Phononic Frequency Combs For Engineering MEMS/NEMS Devices With Tunable Sensitivity

January 13, 2020
Author(s)
Adarsh V. Ganesan, Ashwin Seshia, Jason J. Gorman
Over the past two decades, MEMS resonators have received considerable attention for physical, chemical and biological sensing applications. Typically, the operation of MEMS resonant sensors relies on the tracking of a resonance frequency using a feedback

Label-free surface acoustic wave-based embedded flow sensor

October 27, 2019
Author(s)
Aurore F. Quelennec, Jason J. Gorman, Darwin Reyes-Hernandez
This paper presents a calibration/label-free flow sensor embedded in a microfluidic system. This sensor is based on surface acoustic waves, where the acoustic intensity is dependent on the flow rate of the propagating medium. The range of flow rates

Identifying spurious modes in RF-MEMS resonators using photoelastic imaging

January 21, 2018
Author(s)
Vikrant J. Gokhale, Jason J. Gorman
This paper reports the first use of dynamic photoelastic imaging for identifying in-plane vibration modes in high-frequency MEMS resonators. In a set of width-extensional mode resonators (WE-BARs), we map fundamental width-extensional modes and unwanted

Parametric resonance in linear microresonators using analog feedback

January 21, 2018
Author(s)
Jason J. Gorman, Vikrant J. Gokhale
This paper reports on the design and implementation of an analog feedback controller for generating parametric resonance in linear microresonators that do not intrinsically demonstrate this phenomenon. It is shown that the controller produces a fundamental

A Photonic MEMS Accelerometer with a Low-Finesse Hemispherical Microcavity Readout

August 13, 2017
Author(s)
Yiliang Bao, Feng Zhou, Thomas W. LeBrun, Jason J. Gorman
This paper describes the design, fabrication, and testing of a photonic MEMS accelerometer that uses a hemispherical microcavity to transduce the motion of the proof mass. The cavity design provides stable operation that is relatively tolerant of