Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Joshua Bienfang (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 66

Effect of atomic coherence on "temporal cloaking" in atomic vapors

February 27, 2013
Author(s)
Runbing Li, Lu Deng, Edward W. Hagley, Joshua C. Bienfang, M G. Payne, Mo-Lin Ge
We discuss a different scheme to achieve temporal cloaking in warm atomic vapors. Instead of creating a temporal-spatial window in a patched broadband short optical pulse using static differential dispersion of an optical fiber, we create a temporal

Multi-wavelength Pumping Technique for Up-conversion Single-photon Detectors

May 1, 2011
Author(s)
Lijun Ma, Joshua Bienfang, Oliver T. Slattery, Xiao Tang
We propose a multi-wavelength pumping technique to improve temporal resolution of up-conversion single-photon detectors. By using two-wavelength pumping we doubled the date rate of a quantum system beyond its original limitation.

Frequency Up-conversion Single Photon Detectors for Quantum Communication Systems

April 27, 2011
Author(s)
Lijun Ma, Oliver T. Slattery, Xiao Tang, Joshua Bienfang
Frequency up-conversion technology can be used to increase detection efficiency for near infrared photons, as has been demonstrated in fiber-based quantum communication systems. In a continuous wave pumped up-conversion detector, the temporal resolution is

Up-conversion Single-photon Detector Using Multi-wavelength Sampling Techniques

March 8, 2011
Author(s)
Lijun Ma, Joshua Bienfang, Oliver T. Slattery, Xiao Tang
The maximum achievable data-rate of a quantum communication system can be critically limited by the efficiency and temporal resolution of the system s single-photon detectors. Frequency up-conversion technology can be used to increase detection efficiency

Experimental Study of High Speed Polarization -Coding Quantum Key Distribution with Sifted -Key Rates Over Mbit/s

June 1, 2009
Author(s)
Xiao Tang, Lijun Ma, Alan Mink, Anastase Nakassis, Barry J. Hershman, Joshua C. Bienfang, David H. Su, Ronald F. Boisvert, Charles W. Clark, Carl J. Williams
We have demonstrated a polarization encoded, fiber-based quantum key distribution system operating at 850 nm in the B92 protocol. With a quantum bit transmission rate i.e. optical pulse driving frequency of 625 MHz and a mean photon number of 0.1, we

Is Quantum Cryptography Provably Secure?

June 1, 2009
Author(s)
Anastase Nakassis, Joshua C. Bienfang, Paul M. Johnson, Alan Mink, D J. Rogers, Xiao Tang, Carl J. Williams
Quantum cryptography asserts that shared secrets can be established over public channels in such a way that the total information of an eavesdropper can be made arbitrarily small with probability arbitrarily close to 1. As we will show below, the current

Quantum Key Distribution System Operating at Sifted-Key Rate Over 4 Mbit/s 1

June 1, 2009
Author(s)
Xiao Tang, Lijun Ma, Alan Mink, Anastase Nakassis, Hai Xu, Barry J. Hershman, Joshua C. Bienfang, David H. Su, Ronald F. Boisvert, Charles W. Clark, Carl J. Williams
A complete fiber-based polarization encoding quantum key distribution (QKD) system based on the BB84 protocol has been developed at National Institute of Standard and Technology (NIST). The system can be operated at a sifted key rate of more than 4 Mbit/s

Programmable Instrumentation & GHz Signaling for Quantum Communication Systems

April 30, 2009
Author(s)
Alan Mink, Joshua C. Bienfang, Robert J. Carpenter, Lijun Ma, Barry J. Hershman, Alessandro Restelli, Xiao Tang
We discussed custom instrumentation for high-speed single photon metrology. We focus on the difficulty of GHz data sampling and provide some techniques on how to accomplish it. We also discuss the benefits of field programmable gate arrays as the basis for

Quantum key distribution at GHz transmission rates

February 11, 2008
Author(s)
Alessandro Restelli, Joshua C. Bienfang, Alan Mink, Charles W. Clark
Quantum key distribution (QKD) channels are typically realized by transmitting and detecting single photons, and therefore suffer from dramatic reductions in throughput due to both channel loss and noise. These shortcomings can be mitigated by applying

Detector Dead-Time Effects and Paralyzability in High-Speed Quantum Key Distribution

September 10, 2007
Author(s)
Daniel Rogers, Joshua C. Bienfang, Anastase Nakassis, Hai Xu, Charles W. Clark
Recent advances in quantum key distribution (QKD) have given rise to systems that operate at transmission periods significantly shorter than the dead times of their component single-photon detectors. As systems continue to increase in transmission rate

Demonstration of an Active Quantum Key Distribution Network

August 1, 2006
Author(s)
Xiao Tang, Lijun Ma, Alan Mink, Anastase Nakassis, Hai Xu, Barry J. Hershman, Joshua Bienfang, David H. Su, Ronald Boisvert, Charles W. Clark, Carl J. Williams
We previously demonstrated a high speed, point to point, quantum key distribution (QKD) system with polariztion coding over a fiber link, in which the resulting cryptographic keys were used for one-time pad encryption of real time video signals. In this

Quantum Key Distribution System Operating at Sifted-Key Rate over 4 Mbit/s

June 19, 2006
Author(s)
Xiao Tang, Lijun Ma, Alan Mink, Anastase Nakassis, Hai Xu, Barry J. Hershman, Joshua Bienfang, David H. Su, Ronald Boisvert, Charles W. Clark, Carl J. Williams
A complete fiber-based polarization encoding quantum key distribution (QKD) system based on the BB84 protocol has been developed at National Institute of Standard and Technology (NIST). The system can be operated at a sifted key rate of more than 4 Mbit/s

High Speed Quantum Key Distribution System Supports One-Time Pad Encryption of Real-Time Video

April 21, 2006
Author(s)
Alan Mink, Xiao Tang, Lijun Ma, Anastase Nakassis, Barry J. Hershman, Joshua C. Bienfang, David H. Su, Ronald F. Boisvert, Charles W. Clark, Carl J. Williams
NIST has developed a high-speed quantum key distribution (QKD) test bed incorporating both free-space and fiber systems. These systems demonstrate a major increase in the attainable rate of QKD systems: over two orders of magnitude faster than other

High Speed Quantum Key Distribution System Supports One-Time Pad Encryption of Real-Time Video

April 1, 2006
Author(s)
Alan Mink, Xiao Tang, Lijun Ma, Anastase Nakassis, Barry J. Hershman, Joshua Bienfang, David H. Su, Ronald Boisvert, Charles W. Clark, Carl J. Williams
NIST has developed a high-speed quantum key distribution (QKD) test bed incorporating both free-space and fiber systems. These systems demonstrate a major increase in the attainable rate of QKD systems: over two orders of magnitude faster than other

Is Quantum Cryptography Provably Secure?

April 1, 2006
Author(s)
Anastase Nakassis, Joshua Bienfang, P. Johnson, Alan Mink, D. Rogers, Xiao Tang, Carl J. Williams
Quantum cryptography asserts that shared secrets can be established over public channels in such a way that the total information of an eavesdropper can be made arbitrarily small with probability arbitrarily close to 1. As we will show below, the current