Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Lijun Ma (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 126 - 150 of 156

Low-Noise PPLN-based Single-Photon Detector

February 13, 2007
Author(s)
Hai Xu, Lijun Ma, Oliver T. Slattery, Xiao Tang
This paper describes the detection of single photons, which have been transmitted through standard fiber at the telecom wavelength of 1310 nm. Following transmission, the 1310-nm photon is up-converted to 710 nm in a periodical-poled LiNbO3 (PPLN)

Demonstration of an Active Quantum Key Distribution Network

August 1, 2006
Author(s)
Xiao Tang, Lijun Ma, Alan Mink, Anastase Nakassis, Hai Xu, Barry J. Hershman, Joshua Bienfang, David H. Su, Ronald Boisvert, Charles W. Clark, Carl J. Williams
We previously demonstrated a high speed, point to point, quantum key distribution (QKD) system with polariztion coding over a fiber link, in which the resulting cryptographic keys were used for one-time pad encryption of real time video signals. In this

Quantum Key Distribution System Operating at Sifted-Key Rate over 4 Mbit/s

June 19, 2006
Author(s)
Xiao Tang, Lijun Ma, Alan Mink, Anastase Nakassis, Hai Xu, Barry J. Hershman, Joshua Bienfang, David H. Su, Ronald Boisvert, Charles W. Clark, Carl J. Williams
A complete fiber-based polarization encoding quantum key distribution (QKD) system based on the BB84 protocol has been developed at National Institute of Standard and Technology (NIST). The system can be operated at a sifted key rate of more than 4 Mbit/s

High Speed Quantum Key Distribution System Supports One-Time Pad Encryption of Real-Time Video

April 21, 2006
Author(s)
Alan Mink, Xiao Tang, Lijun Ma, Anastase Nakassis, Barry J. Hershman, Joshua C. Bienfang, David H. Su, Ronald F. Boisvert, Charles W. Clark, Carl J. Williams
NIST has developed a high-speed quantum key distribution (QKD) test bed incorporating both free-space and fiber systems. These systems demonstrate a major increase in the attainable rate of QKD systems: over two orders of magnitude faster than other

High Speed Quantum Key Distribution System Supports One-Time Pad Encryption of Real-Time Video

April 1, 2006
Author(s)
Alan Mink, Xiao Tang, Lijun Ma, Anastase Nakassis, Barry J. Hershman, Joshua Bienfang, David H. Su, Ronald Boisvert, Charles W. Clark, Carl J. Williams
NIST has developed a high-speed quantum key distribution (QKD) test bed incorporating both free-space and fiber systems. These systems demonstrate a major increase in the attainable rate of QKD systems: over two orders of magnitude faster than other