Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Sergey Polyakov (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 82

Quantum receiver for large alphabet communication

February 21, 2018
Author(s)
Sergey Polyakov, Ivan Burenkov, Olga Tikhonova
Quantum mechanics allows measurements that surpass the fundamental sensitivity limits of classical methods. To benefit from the quantum advantage in a practical setting, the receiver should use communication channel resources optimally; this can be done

Simultaneous, Full Characterization of a Single-Photon State

November 15, 2017
Author(s)
Tim O. Thomay, Sergey Polyakov, Elizabeth A. Goldschmidt, Glenn S. Solomon, Olivier Gazzano, Vivien Loo
As single-photon sources become more mature and are used more often in quantum information, communications, and measurement applications, their characterization becomes more important. Single-photon-like light is often characterized by its brightness, as

Software for complete mode structure analysis of a light field

June 26, 2017
Author(s)
Ivan A. Burenkov, Sergey V. Polyakov
We present a software package aimed at simulating photon-number probability distributions of a range of naturally occurring classical and non-classical states of light. This software can generate arbitrary probability distributions based on the known mode

Coherent quantum frequency bridge: phase preserving, nearly-noiseless parametric frequency converter

May 3, 2017
Author(s)
Ivan A. Burenkov, Yu-Hsiang Cheng, Tim O. Thomay, Glenn S. Solomon, Alan L. Migdall, Thomas Gerrits, Adriana E. Lita, Sae Woo Nam, Lynden K. Shalm, Sergey V. Polyakov
We characterize an efficient and nearly-noiseless parametric frequency upconverter. The ultra- low noise regime is reached by the wide spectral separation between the input and pump frequencies and the low pump frequency relative to the input photons. The

Full statistical mode reconstruction of a light field via a photon-number resolved measurement

May 2, 2017
Author(s)
Ivan A. Burenkov, Sergey V. Polyakov, Thomas Gerrits, Timothy J. Bartley, Georg Harder, Christine Silberhorn, Ankita Sharma, Elizabeth A. Goldschmidt
We present a method to reconstruct the mode structure and optical losses of multimode conjugated optical fields using an experimentally measured joint photon-number probability distribution. We demonstrate nearly-perfect reconstruction of a multimode field

Scalable, chip-based optically-controlled gates for quantum information processing

November 15, 2016
Author(s)
Sergey V. Polyakov, Ivan Burenkov, Olga Tikhonova
Here we present a simple and robust method to build on-the-fly configurable quantum gates based on photonic exchange between quantum nodes. The idea is based on a high reflectivity of Bragg grating structures near resonant wavelengths. The control is

Statistically background-free, phase-preserving parametric up-conversion with faint light

July 9, 2015
Author(s)
Yu-Hsiang Cheng, Tim O. Thomay, Glenn S. Solomon, Alan L. Migdall, Sergey Polyakov
We demonstrate phase preservation in a frequency up-conversion process at the single-photon level. This phase preservation enables the applications of frequency conversion of entangled photon pairs. Periodically poled lithium niobate waveguides and a 1550

Single-Photon Detector Calibration

July 7, 2015
Author(s)
Sergey V. Polyakov
In this chapter we introduce the set of detector properties, common to most contemporary detectors, that should be determined for a complete characterization. Then we introduce methods for detector characterization, and finally we present practical recipes

Positive Operator-Valued Measure reconstruction of a beam-splitter tree based photon-number- resolving detector

March 30, 2015
Author(s)
Sergey V. Polyakov, Fabrizio Piacentini, Filippo Levi, A Avella, M Lopez, Stefan Kuck, Ivo P. Degiovanni, Giorgio Brida, Marco Genovese
Here we present a reconstruction of the Positive Operator-Value Measurement of a photon-number-resolving detector comprised of three 50:50 beamsplitters in a tree configuration, terminated with four single-photon avalanche detectors.

Reconstruction of mode structure of faint sources and its applications

December 19, 2014
Author(s)
Sergey V. Polyakov, Alan L. Migdall, Elizabeth A. Goldschmidt, Giorgio Brida, Stefan Kuck, Fabrizio Piacentini, Ivo P. Degiovanni, I. Ruo Berchera, Marco Genovese
We build upon our newly developed mode reconstruction technique that takes advantage of higher-order photon number statistics and propose new experiments.

Experimental Bounds on Classical Random Field Theories

December 10, 2014
Author(s)
Joffrey K. Peters, Sergey V. Polyakov, Jingyun Fan, Alan L. Migdall
Alternative theories to quantum mechanics motivate important fundamental tests of our understanding and description of the smallest physical systems. Here we place experimental limits on those classical field theories which result in power-dependent

Hybrid Detectors

November 29, 2013
Author(s)
Sergey V. Polyakov, Alan L. Migdall, Franco N. Wong, Ivo P. Degiovanni, Ian Walmsley, Hendrik B. Coldenstrodt-Ronge
We present an overview of e orts to improve photon-counting detection systems through the use of hybrid detection techniques such as spatial- and time-multiplexing of conventional detectors, and frequency up-conversion. We review the basic operation for

Photomultiplier tubes

November 29, 2013
Author(s)
Sergey V. Polyakov
Photomultiplier tubes (PMTs), also known as photomultipliers, are remarkable devices. While a PMT was the rst device to detect light at the single photon level, invented more than 80 years ago, they are widely used to this day, particularly in biological

Single-Photon Sources and Detectors Book: Chapter 1: Introduction

November 29, 2013
Author(s)
Joshua C. Bienfang, Jingyun Fan, Alan L. Migdall, Sergey V. Polyakov
In the beginning there was light. And it was good. Not long thereafter people began to look for a comprehensive understanding of its nature. While the publication record starts o a little spotty, in the fth century BC the Greek philosopher Empedocles

Mode reconstruction of a light field by multi-photon statistics

July 15, 2013
Author(s)
Elizabeth A. Goldschmidt, Fabrizio Piacentini, I. Ruo Berchera, Sergey V. Polyakov, Silke Peters, Stefan Kuck, Giorgio Brida, Ivo P. Degiovanni, Alan L. Migdall, Marco Genovese
Knowing the underlying number and structure of occupied modes of a light field plays a crucial role in minimizing loss and decoherence of quantum information. Typically, full characterization of the mode structure involves a series of several separate

Practical implementation of a test of event-based corpuscular model as an alternative to quantum mechanics

May 8, 2013
Author(s)
Sergey V. Polyakov, Alan L. Migdall, Ivo P. Degiovanni, Fabrizio Piacentini, Giorgio Brida, Marco Genovese, Paola Traina
We describe in detail the first experimental test that distinguishes between an event-based corpuscular model of the interaction of photons with matter and quantum mechanics. The test looks at the interference that results as a single photon passes through

Experimental test of an event-based corpuscular model modification as an alternative to quantum mechanics

February 13, 2013
Author(s)
Giorgio Brida, Ivo P. Degiovanni, Marco Genovese, Alan L. Migdall, Fabrizio Piacentini, Sergey Polyakov, Paola Traina
We present the first experimental test that distinguishes between an event-based corpus- cular model of the interaction of photons with matter and quantum mechanics. The test looks at the interference that results as a single photon passes through a Mach

Experimental test of an event-based corpuscular model modification as an alternative to quantum mechanics

February 13, 2013
Author(s)
Giorgio Brida, Ivo P. Degiovanni, Marco Genovese, Alan L. Migdall, Fabrizio Piacentini, Sergey Polyakov, Paola Traina
We present the first experimental test that distinguishes between an Event-Based Corpuscular Model (EBCM)9) of the interaction of photons with matter and quantum mechanics. The test looks at the interference that results as a single photon passes through a

Dynamics of a pulsed single photon source

December 18, 2012
Author(s)
Sergey V. Polyakov, Edward B. Flagg, Tim O. Thomay, Glenn S. Solomon
We propose and demonstrate a method for an independent verification of a degree of single photon purity and coherence applicable for all single-photon emitters used in pulsed mode. Using two-time second-order correlation measurements, we reconstruct the

Dynamics of the non-classical light from a single solid-state quantum emitter

October 18, 2012
Author(s)
Edward B. Flagg, Sergey Polyakov, Tim O. Thomay, Glenn S. Solomon
We measure the dynamics of a non-classical optical field using two-time second-order correlations in conjunction with pulsed excitation. The technique quantifies single-photon purity and coherence during the excitation-relaxation cycle of an emitter, which

Ancilla assisted calibration of a measuring apparatus

June 19, 2012
Author(s)
Alan L. Migdall, Giorgio Brida, L. Ciavarella, Ivo P. Degiovanni, Marco Genovese, M. G. Mingolla, M. G. A. Paris, Fabrizio Piacentini, Sergey Polyakov
The rapid development of quantum systems has enabled a wide range of novel and innovative technologies, from quantum information processing to quantum etrology and imaging [113], mainly based on optical systems. Precise characterization techniques of