Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Richard Kasica (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 13 of 13

Multi-scale alignment to buried atom-scale devices using Kelvin probe force microscopy

February 24, 2024
Author(s)
Pradeep Namboodiri, Jonathan Wyrick, Gheorghe Stan, Xiqiao Wang, Fan Fei, Ranjit Kashid, Scott Schmucker, Richard Kasica, Bryan Barnes, Michael Stewart, Richard M. Silver
Fabrication of quantum devices by atomic scale patterning with a Scanning Tunneling Microscope (STM) has led to the development of single/few atom transistors, few-donor/quantum dot devices for spin manipulation and arrayed few-donor devices for analog

Nanolithography Toolbox

October 19, 2016
Author(s)

Bojan R. Ilic, Krishna Coimbatore Balram, Daron A. Westly, Marcelo I. Davanco, Karen E. Grutter, Qing Li, Thomas Michels, Christopher H. Ray, Liya Yu, Neal A. Bertrand, Samuel M. Stavis, Vladimir A. Aksyuk, James A. Liddle, Brian A. Bryce, Nicolae Lobontiu, Yuxiang Liu, Meredith Metzler, Gerald Lopez, David Czaplewski, Leonidas Ocola, Pavel Neuzil, Vojtech Svatos, Slava Krylov, Christopher B. Wallin, Ian J. Gilbert, Kristen A. Dill, Richard J. Kasica, Kartik A. Srinivasan, Gregory Simelgor, Juraj Topolancik

The Nanolithography Toolbox

October 19, 2016
Author(s)
Krishna Coimbatore Balram, Daron Westly, Marcelo I. Davanco, Karen E. Grutter, Qing Li, Thomas Michels, Christopher H. Ray, Richard Kasica, Christopher B. Wallin, Ian J. Gilbert, Brian A. Bryce, Gregory Simelgor, Juraj Topolancik, Nicolae Lobontiu, Yuxiang Liu, Pavel Neuzil, Vojtech Svatos, Kristen A. Dill, Neal A. Bertrand, Meredith Metzler, Gerald Lopez, David Czaplewski, Leonidas Ocola, Kartik Srinivasan, Samuel Stavis, Vladimir Aksyuk, James Alexander Liddle, Slava Krylov, Robert Ilic
This article describes a platform-independent software package for scripted lithography pattern layout generation and complex processing. The Nanolithography Toolbox, developed at the Center for Nanoscale Science and Technology (CNST) at the National

Aspect-ratio driven evolution of high-order resonant modes and near-field distributions in localized surface phonon polariton nanostructures

September 13, 2016
Author(s)
Joseph G. Tischler, Chase T. Ellis, Orest Glembocki, Francisco Bezares, Alexander Giles, Richard Kasica, Loretta Shirley, Jeffrey C. Owrutsky, Dmitry Chigrin, Joshua Caldwell
Polar dielectrics have garnered much attention as an alternative to plasmonic metals in the mid- to long-wave infrared spectral regime due to their low optical losses. As such, nanoscale resonators composed of these materials demonstrate figures of merit

Cryogenic Etching of High Aspect Ratio 400 nm Pitch Silicon Gratings

July 29, 2016
Author(s)
Houxun Miao, Lei Chen, Mona Mirzaeimoghri, Richard Kasica, Han Wen
The cryogenic process and Bosch process are two widely used processes for reactive ion etching of high aspect ratio silicon structures. This paper focuses on the cryogenic deep etching of 400.0 nm pitch silicon gratings. By creating a metal hard mask on

Nanostructured Surface Phonon Polariton Systems for Mid-Infrared Nanophotonics

July 1, 2016
Author(s)
Alexander Giles, Richard Kasica, Joshua Caldwell
In this article, novel, phonon-based silicon carbide nanopillar antenna arrays are described. Using fabricated SiC structures, sub-diffractional, localized resonances are observed with exceptionally high quality factors (40-305) and corresponding high

Nanoparticle size determination using optical microscopes

October 27, 2014
Author(s)
Ravikiran Attota, Richard J. Kasica, Premsagar P. Kavuri, Hyeong G. Kang, Lei Chen
We present a simple method for size determination of nanoparticles using conventional optical microscopes. The method, called through-focus scanning optical microscopy (TSOM), makes use of the four-dimensional optical information collected at different

Nanoscale Imaging and Spectroscopy of Plasmonic Modes with the PTIR technique

August 1, 2014
Author(s)
Aaron M. Katzenmeyer, Jungseok Chae, Richard Kasica, Glenn Holland, Basudev Lahiri, Andrea Centrone
The collective oscillation of conduction electrons in plasmonic nanomaterials allows the coupling of propagating light waves with nanoscale volumes of matter ("hot spots") and allows engineering their optical response from the UV to THz as a function of

Organosilicate Polymer E-Beam Resists with High Resolution, Sensitivity and Stability

February 28, 2013
Author(s)
Christopher Soles, Richard Kasica, Hae-Jeong Lee, Jae H. Sim, Sung-Il Lee, Ki-Bum Kim, Hyun-Mi Kim, Do Y. Yoon
Hydrogen silsesquioxane (HSQ) is an attractive electron-beam (e-beam) resist for sub-20 nm lithography due to its high resolution, excellent line-edge-roughness (LER), and good plasma etch resistance. However, the sensitivity and long-term stability of HSQ

Robust Auto-Alignment Technique for Orientation-Dependent Etching of Nanostructures

May 29, 2012
Author(s)
Craig D. McGray, Richard J. Kasica, Ndubuisi G. Orji, Ronald G. Dixson, Michael W. Cresswell, Richard A. Allen, Jon C. Geist
A robust technique is presented for auto-aligning nanostructures to slow-etching crystallographic planes in materials with diamond cubic structure. Lithographic mask patterns are modified from the intended dimensions of the nanostructures to compensate for

Nanoparticle size and shape evaluation using the TSOM optical microscopy method

June 6, 2010
Author(s)
Ravikiran Attota, Richard J. Kasica, Lei Chen, Premsagar P. Kavuri, Richard M. Silver, Andras Vladar
We present a novel optical TSOM (through-focus scanning optical microscopy - pronounced as 'tee-som') method that produces nanoscale dimensional measurement sensitivity using a conventional optical microscope. The TSOM method uses optical information from

Through-focus Scanning and Scatterfield Optical Methods for Advanced Overlay Target Analysis

September 1, 2008
Author(s)
Ravikiran Attota, Michael T. Stocker, Richard M. Silver, Nathanael A. Heckert, Hui Zhou, Richard J. Kasica, Lei Chen, Ronald G. Dixson, Ndubuisi G. Orji, Bryan M. Barnes, Peter Lipscomb
In this paper we present overlay measurement techniques that use small overlay targets for advanced semiconductor applications. We employ two different optical methods to measure overlay using modified conventional optical microscope platforms. They are