Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Kartik Srinivasan (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 152

Ultra-broadband Kerr microcomb through soliton spectral translation

December 14, 2021
Author(s)
Gregory Moille, Edgar Perez, Jordan Stone, Ashutosh Rao, Xiyuan Lu, Tahmid Rahman, Yanne Chembo, Kartik Srinivasan
Broad bandwidth and stable microresonator frequency combs are critical for optical atomic clocks, optical frequency synthesis, dual comb spectroscopy, and a host of other applications that require accurate and precise optical frequency measurements in a

Topological Frequency Combs and Nested Temporal Solitons

August 5, 2021
Author(s)
Sunil Mittal, Gregory Moille, Kartik Srinivasan, Yanne Chembo, Mohammad Hafezi
Recent advances in realizing optical frequency combs using nonlinear parametric processes in integrated photonic resonators have revolutionized on-chip optical clocks, spectroscopy, and multi channel optical communications. At the same time, the

Purcell-enhanced single photon source based on a deterministically placed WSe2 monolayer quantum dot in a circular Bragg grating cavity

May 28, 2021
Author(s)
Oliver Iff, Quirin Buchinger, Magdalena Moczala-Dusanowska, Martin Kamp, Simon Betzold, Marcelo I. Davanco, Kartik Srinivasan, Sefaattin Tongay, Carlos Anton-Solanas, Sven Hofling, Christian Schneider
We demonstrate a deterministic Purcell-enhanced single-photon source realized by integrating an atomically thin WSe2 layer with a circular Bragg grating cavity. The cavity significantly enhances the photoluminescence from the atomically thin layer, and

Towards integrated photonic interposers for processing octave-spanning microresonator frequency combs

May 26, 2021
Author(s)
Ashutosh Rao, Gregory Moille, Xiyuan Lu, Daron Westly, Davide Sacchetto, Michael Geiselmann, Michael Zervas, Scott Papp, John E. Bowers, Kartik Srinivasan
Microcombs - optical frequency combs generated in microresonators - have advanced tremendously in the last decade, and are advantageous for applications in frequency metrology, navigation, spectroscopy, telecommunications, and microwave photonics

Spontaneous Pulse Formation in Edgeless Photonic Crystal Resonators

April 29, 2021
Author(s)
Su P. Yu, Daniel Cole, Hojoong Jung, Gregory Moille, Kartik Srinivasan, Scott Papp
Complex systems are a proving ground for fundamental interactions between components and their collective emergent phenomena. Through intricate design, integrated photonics offers intriguing nonlinear inter- actions that create new patterns of light. In

Hybrid InP and SiN integration of an octave-spanning frequency comb

February 2, 2021
Author(s)
Travis Briles, Su P. Yu, Lin Chang, Chao Xiang, Joel Guo, David Kinghorn, Gregory Moille, Kartik Srinivasan, John E. Bowers, Scott Papp
Implementing optical-frequency combs with integrated photonics will enable wider use of precision timing signals. Here, we explore the generation of an octave-span, Kerr-microresonator frequency comb, using hybrid integration of an InP distributed-feedback

Automated on-axis direct laser writing of coupling elements for photonic chips

December 21, 2020
Author(s)
Edgar Perez, Gregory Moille, Xiyuan Lu, Daron Westly, Kartik Srinivasan
Direct laser writing (DLW) has recently been used to create versatile micro-optic structures that facilitate photonic-chip coupling, like free-form lenses, free-form mirrors, and photonic wirebonds. However, at the edges of photonic chips, the top-down/off

Improved coupled-mode theory for high-index-contrast photonic platforms

December 4, 2020
Author(s)
Qing Li, Gregory Moille, Hossein Taheri, Ali Adibi, Kartik Srinivasan
Coupled-mode theory has been widely used in optics and photonics design. Despite its popularity, several different formulations of coupled-mode theory exist in the literature and their applicable range is not entirely clear, in particular when it comes to

Efficient photoinduced second-harmonic generation in silicon nitride photonics

November 2, 2020
Author(s)
Xiyuan Lu, Gregory Moille, Ashutosh Rao, Daron Westly, Kartik Srinivasan
Silicon photonics lacks a second-order nonlinear optical (chi(2)) response in general because the typical constituent materials are centro-symmetric and lack inversion symmetry, which prohibits chi(2) nonlinear processes such as second harmonic generation

Dissipative Kerr Solitons in a III-V Microresonator

June 22, 2020
Author(s)
Gregory T. Moille, Lin Chang, Weiqiang Xie, Ashutosh S. Rao, Xiyuan Lu, Marcelo I. Davanco, John E. Bowers, Kartik A. Srinivasan
We demonstrate stable microresonator Kerr solitons in a III-V platform through cryogenic quenching of the thermorefractive effect. Such phase-stable operation is critical to fully exploit the high nonlinearity and low loss available in this platform.

Heterogeneous photodiodes on silicon nitride waveguides

May 11, 2020
Author(s)
Qianhuan Yu, Junyi Gao, Nan Ye, Baiheng Chen, Keye Sun, Linli Xie, Kartik Srinivasan, Michael Zervas, Gabriele Navickaite, Michael Geiselmann, Andreas Beling
Heterogeneous integration through low-temperature die bonding is a promising technique to enable high-performance III-V photodetectors on the silicon nitride (Si3N4) photonic platform. Here we demonstrate InGaAs/InP modified uni-traveling carrier

Hybrid integrated quantum photonic circuits

April 13, 2020
Author(s)
Ali Elshaari, Wolfram Pernice, Kartik Srinivasan, Oliver Benson, Val Zwiller
Recent development in chip-based photonic quantum circuits has radically impacted the ways in which we can process quantum information. However, it is challenging for any one specific integrated photonics platform to meet the stringent demands for most