Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Kartik Srinivasan (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 126 - 150 of 287

A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability

April 22, 2019
Author(s)
Jin Liu, Rongbin Su, Yuming Wei, Beimeng Yao, Saimon Filipe Covre da Silva, Ying Yu, Jake Iles-Smith, Kartik Srinivasan, Armando Rastelli, Juntao Li, Xuehua Wang
The generation of high-quality entangled photon pairs has been being a long-sought goal in modern quan-tum communication and computation. To date, the most widely-used entangled photon pairs are gener-ated from spontaneous parametric downconversion, a

Dual comb spectroscopy with tailored spectral broadening in nanophotonic Si3N4

April 15, 2019
Author(s)
Esther Baumann, Edgar Perez, Gabriel M. Colacion, Fabrizio Giorgetta, Kevin Cossel, Gabriel Ycas, David Carlson, Kartik Srinivasan, Scott Papp, Ian Coddington, Nathan R. Newbury
Spectral broadening of compact robust Er+: fiber combs is demonstrated with tailored Si3N4 waveguides to obtain spectrally-smooth broadened light in the 2 μm 2.5 μm atmospheric water window for gas spectroscopy. This successfully extends the Er+ spectrum

Tuning Kerr-Soliton Frequency Combs to Atomic Resonances

April 5, 2019
Author(s)
Su P. Yu, Travis Briles, Gregory Moille, Xiyuan Lu, Scott Diddams, Kartik Srinivasan, Scott Papp
Frequency combs based on nonlinear optical phenomena in integrated photonics are a versatile light source that can explore new applications, including frequency metrology, optical communications, and sensing. We demonstrate robust frequency-control

Chip-integrated visible-telecom entangled photon pair source for quantum communication

January 21, 2019
Author(s)
Xiyuan Lu, Qing Li, Daron Westly, Gregory Moille, Anshuman Singh, Vikas Anant, Kartik Srinivasan
Photon pair sources are fundamental blocks for quantum entanglement and quantum communication. Recent studies in silicon photonics have documented promising characteristics for photon pair sources within the telecommunications band, including sub-milliwatt

Photonic waveguide to free-space Gaussian beam extreme mode converter

October 10, 2018
Author(s)
Sangsik Kim, Daron Westly, Brian J. Roxworthy, Qing Li, Alexander Yulaev, Kartik Srinivasan, Vladimir Aksyuk
Integration of photonic chips with atomic, micromechanical, chemical and biological systems can advance science and open many possibilities in chip-scale devices and technology. Compact photonic structures for direct coupling of light between high-index

Fully self-referenced frequency comb consuming 5 Watts of electrical power

September 12, 2018
Author(s)
Paritosh Manurkar, Edgar F. Perez, Daniel D. Hickstein, David R. Carlson, Jeffrey T. Chiles, Daron A. Westly, Esther Baumann, Scott A. Diddams, Nathan R. Newbury, Kartik A. Srinivasan, Scott B. Papp, Ian R. Coddington
We present a hybrid fiber/waveguide design for a 100-MHz frequency comb that is fully self- referenced and temperature controlled with less than 5 W of electrical power. Self-referencing is achieved by supercontinuum generation in a silicon nitride

Tunable mid-infrared generation via wide-band four-wave mixing in silicon nitride waveguides

August 27, 2018
Author(s)
Abijith S. Kowligy, Daniel D. Hickstein, Alexander Lind, David Carlson, Henry R. Timmers, Nima Nader, Daniel Maser, Daron Westly, Kartik Srinivasan, Scott Papp, Scott Diddams
We demonstrate wide-band frequency down-conversion to the mid-infrared (MIR) using four-wave mixing (FWM) of near-infrared (NIR) femtosecond-duration pulses from an Er:fiber laser, corresponding to 100 THz spectral translation. Photonic-chip-based silicon

Infrared Astronomical Spectroscopy and Radial Velocity Measurements with Precision Below 10 cm/s

August 9, 2018
Author(s)
Andrew J. Metcalf, Tyler Anderson, Chad F. Bender, Wesley Brand, David Carlson, Scott Diddams, Connor Fredrick, S. Halverson, Daniel D. Hickstein, Fred Hearty, Jeffrey M. Jennings, Shubham Kanodia, Kyle Kaplan, Emily Lubar, Suvrath Mahadevan, Andrew Monson, Joe P. Ninan, Colin Nitroy, Scott Papp, L. Ramsey, Paul Robertson, Arpita Roy, Christian Schwab, Kartik Srinivasan, Gudmundur Stefansson, Ryan C. Terrien
We detail the first infrared precision astronomical spectroscopy results from the combination of an electro-optic laser frequency comb and the Habitable Zone Planet Finder spectrograph at the 10 m Hobby-Eberly telescope.

Accurate optical stabilization of a Kerr-microresonator frequency comb

June 14, 2018
Author(s)
Travis Briles, Jordan R. Stone, Tara E. Drake, Daryl T. Spencer, Connor D. Fredrick, Qing Li, Daron A. Westly, Bojan R. Ilic, Kartik A. Srinivasan, Scott A. Diddams, Scott B. Papp
Carrier-envelope-phase stabilization of optical waveforms enables exquisitely precise measurements by way of direct optical-frequency synthesis, coherent optical-to-microwave phase conversion, and control of ultrafast waveforms. We report such phase

Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: the role of nanofabrication

June 13, 2018
Author(s)
Jin Liu, Kumarasiri Konthasinghe, Marcelo I. Davanco, John Lawall, Vikas Anant, Varun Verma, Richard Mirin, Jin Dong Song, Ben Ma, Ze Sheng Chen, Hai Qiao Ni, Zhi Chuan Niu, Kartik Srinivasan
Single self-assembled InAs/GaAs quantum dots are a promising solid-state quantum technology, with vacuum Rabi splitting, single-photon-level nonlinearities, and bright, pure, and indistinguishable single-photon generation having been demonstrated. In such

An Integrated-Photonics Optical-Frequency Synthesizer

May 3, 2018
Author(s)
Daryl T. Spencer, Tara E. Drake, Travis Briles, Jordan R. Stone, Laura C. Sinclair, Connor D. Fredrick, Qing Li, Daron A. Westly, Bojan R. Ilic, Aaron Bluestone, Nicolas Volet, Tin Komljenovic, Seung Hoon Lee, Dong Yoon Oh, Myoung-Gyun Suh, Ki Youl Yang, Martin H. Pfeiffer, Tobias J. Kippenberg, Erik Norberg, Kerry Vahala, Kartik A. Srinivasan, Nathan R. Newbury, Luke Theogarajan, John E. Bowers, Scott A. Diddams, Scott B. Papp
Integrated-photonics microchips now enable a range of advanced functionalities for high- coherence applications like data transmission, for highly optimized physical sensors, and for harnessing quantum states, but with size, extensibility, and portability

Photonic chip for laser stabilization to an atomic vapor at a precision of $10^{-11}$

April 11, 2018
Author(s)
Matthew T. Hummon, Songbai Kang, Douglas G. Bopp, Qing Li, Daron A. Westly, Sangsik Kim, Connor D. Fredrick, Scott A. Diddams, Kartik A. Srinivasan, John E. Kitching
We perform precision spectroscopy of rubidium confined in a micro-machined, 27~mm$^3$ volume, vapor cell using a collimated free space 120~$\bm{\mu}$m diameter laser beam derived directly from a single mode silicon nitride waveguide. With this optical

Quasi-Phase-Matched Supercontinuum Generation in Photonic Waveguides

February 1, 2018
Author(s)
Daniel D. Hickstein, Grace Kerber, David R. Carlson, Lin Chang, Daron A. Westly, Kartik A. Srinivasan, Abijith S. Kowligy, John Bowers, Scott A. Diddams, Scott B. Papp
Supercontinuum generation in on-chip waveguides is a versatile source of broadband light and the generated spectrum is determined by the phase-matching conditions. Here we show that quasi- phase-matching via periodic modulations of the waveguide structure