Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Kartik Srinivasan (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 176 - 200 of 287

Cascaded emission of single photons from the biexciton in monolayered WSe2

November 10, 2016
Author(s)
Yu-Ming He, Oliver Iff, Nils Lundt, Vasilij Baumann, Marcelo I. Davanco, Kartik Srinivasan, Sven Hofling, Christian Schneider
Monolayers of transition metal dichalcogenide materials emerged as a new material class to study excitonic effects in solid state. They benefit from the enormous coulomb correlations between electrons and holes, as a result of reduced dielectric screening

Nanolithography Toolbox

October 19, 2016
Author(s)

Bojan R. Ilic, Krishna Coimbatore Balram, Daron A. Westly, Marcelo I. Davanco, Karen E. Grutter, Qing Li, Thomas Michels, Christopher H. Ray, Liya Yu, Neal A. Bertrand, Samuel M. Stavis, Vladimir A. Aksyuk, James A. Liddle, Brian A. Bryce, Nicolae Lobontiu, Yuxiang Liu, Meredith Metzler, Gerald Lopez, David Czaplewski, Leonidas Ocola, Pavel Neuzil, Vojtech Svatos, Slava Krylov, Christopher B. Wallin, Ian J. Gilbert, Kristen A. Dill, Richard J. Kasica, Kartik A. Srinivasan, Gregory Simelgor, Juraj Topolancik

The Nanolithography Toolbox

October 19, 2016
Author(s)
Krishna Coimbatore Balram, Daron Westly, Marcelo I. Davanco, Karen E. Grutter, Qing Li, Thomas Michels, Christopher H. Ray, Richard Kasica, Christopher B. Wallin, Ian J. Gilbert, Brian A. Bryce, Gregory Simelgor, Juraj Topolancik, Nicolae Lobontiu, Yuxiang Liu, Pavel Neuzil, Vojtech Svatos, Kristen A. Dill, Neal A. Bertrand, Meredith Metzler, Gerald Lopez, David Czaplewski, Leonidas Ocola, Kartik Srinivasan, Samuel Stavis, Vladimir Aksyuk, James Alexander Liddle, Slava Krylov, Robert Ilic
This article describes a platform-independent software package for scripted lithography pattern layout generation and complex processing. The Nanolithography Toolbox, developed at the Center for Nanoscale Science and Technology (CNST) at the National

Quantum Electromechanics on Silicon Nitride Nanomembranes

August 3, 2016
Author(s)
Johannes Fink, Mahmoud Kalaee, Alessandro Pitanti, Richard Norte, Lukas Heinzle, Marcelo I. Davanco, Kartik Srinivasan, Oskar Painter
We present a platform based upon silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Utilizing tensile stress and lithographic patterning of a

Thermometry with Optomechanical Cavities

June 6, 2016
Author(s)
Thomas P. Purdy, Karen E. Grutter, Kartik Srinivasan, Nikolai Klimov, Zeeshan Ahmed, Jacob Taylor
Thermally-driven motion of a nanomechanical resonator may be employed as an absolute thermometer. We experimentally measure radiation pressure shot noise induced quantum correlations to absolutely calibrate the motional signal transduced onto an optical

Imaging Nanophotonic Modes of Microresonators using a Focused Ion Beam

January 15, 2016
Author(s)
Kevin A. Twedt, Jie J. Zou, Marcelo I. Davanco, Kartik A. Srinivasan, Jabez J. McClelland, Vladimir A. Aksyuk
Optical microresonators have proven powerful in a wide range of applications, including cavity quantum electrodynamics, biosensing, microfludics, and cavity optomechanics. Their performance depends critically on the exact distribution of optical energy

NIST on a Chip: Realizing SI units with microfabricated alkali vapour cells

October 16, 2015
Author(s)
John E. Kitching, Elizabeth A. Donley, Svenja A. Knappe, Matthew T. Hummon, Argyrios Dellis, Jeffrey A. Sherman, Kartik A. Srinivasan, Vladimir A. Aksyuk, Qiliang Li, Daron A. Westly, Brian J. Roxworthy, Amit Lal
We describe several ways in which microfabricated alkali atom vapour cells might potentially be used to accurately realize a variety of SI units, including the second, the meter, the kelvin, the ampere and the volt, in a compact, low-cost “chip-scale”