Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: John J. Bollinger (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 254

Diamagnetic correction to the 9 Be + ground-state hyperfine constant

July 21, 2011
Author(s)
Nobuyasu Shiga, Wayne M. Itano, John J. Bollinger
We report an experimental determination of the diamagnetic correction to the 9Be + ground state hyperfine constant A. We measured A = −625 008 837.371(11) Hz at a magnetic field B of 4.4609 T. Comparison with previous results, obtained at lower values of B

Phase-coherent detection of an optical dipole force by Doppler velocimetry

May 10, 2011
Author(s)
Michael J. Biercuk, Hermann Uys, Joseph W. Britton, Aaron Vandevender, John J. Bollinger
We report phase-coherent Doppler detection of optical dipole forces using large ion crystals in a Penning trap. The technique is based on laser Doppler velocimetry using a cycling transition in 9Be+ near 313 nm and the center-of-mass (COM) ion motional

Filtering noise with a quantum probe

May 5, 2011
Author(s)
John J. Bollinger
I discuss in general terms the ideas behind the manuscript "Single-ion quantum lock-in amplifier" by Kotler and colleagues which is scheduled to be published in the journal Nature. The Kotler manuscript describes a generalization of the concept of lock-in

Decoherence due to elastic Rayleigh scattering

November 12, 2010
Author(s)
Hermann Uys, Michael J. Biercuk, Aaron Vandevender, Christian Ospelkaus, Dominic Meiser, R. Ozeri, John Bollinger
We present theoretical and experimental studies of the decoherence of hyperfine ground-state superpositions due to elastic Rayleigh scattering of off-resonant light. We demonstrate that under appropriate conditions, elastic Rayleigh scattering can be the

Toward Spin Squeezing with Trapped Ions

September 23, 2010
Author(s)
John J. Bollinger, Hermann Uys, Michael Biercuk, Joseph W. Britton
Building robust instruments capable of making interferometric measurements with precision beyond the standard quantum limit remains an important goal in many metrology laboratories. We describe here the basic concepts underlying spin squeezing experiments

yocto-Newton force detection sensitivity using trapped ions

August 22, 2010
Author(s)
Michael J. Biercuk, Joseph W. Britton, Hermann Uys, Aaron Vandevender, John Bollinger
Recent experimental advances have shown that it is possible to detect forces arising from electric fields at a level of aN/ √Hz (atto = 10 -18 through coupling of micro or nanofabricated mechanical resonators to a variety of physical systems including

Preserving quantum coherence using optimized open-loop control techniques

May 16, 2010
Author(s)
Michael J. Biercuk, Hermann Uys, Aaron Vandevender, Nobuyasu Shiga, Wayne M. Itano, John J. Bollinger
We describe experimental and theoretical studies of open-loop quantum control techniques known as dynamical decoupling (DD) for the suppression of decoherence-induced errors in quantum systems. Our experiments on trapped atomic ion qubits demonstrate that

Toward scalable ion traps for quantum information processing

March 16, 2010
Author(s)
Jason Amini, Hermann Uys, Janus H. Wesenberg, Signe Seidelin, Joseph W. Britton, John J. Bollinger, Dietrich G. Leibfried, Christian Ospelkaus, Aaron Vandevender, David J. Wineland
The basic components for a quantum information processor using trapped ions have been demonstrated in a number of experiments. To perform complex algorithms that are not tractable with classical computers, these components need to be integrated and scaled

High-Fidelity Quantum Control Using 9Be+ Ion Crystals in a Penning Trap

August 19, 2009
Author(s)
Michael J. Biercuk, Hermann Uys, Aaron Vandevender, Nobuyasu Shiga, Wayne M. Itano, John J. Bollinger
We provide an introduction to the use of ion crystals in a Penning trap for experiments in quantum information. Macroscopic Penning traps allow for the containment of a few to a few million atomic ions whose internal states may be used in quantum

Optimize Noise Filtration through Dynamical Decoupling

July 24, 2009
Author(s)
Hermann Uys, Michael J. Biercuk, John J. Bollinger
One approach to maintaining phase coherence of qubits through dynamical decoupling consists of applying a sequence of Hahn spin-echo pulses. Recent studies have shown that, in certain noise environments, judicious choice of the delay times between these

Experimental Uhrig Dynamical Decoupling Using Trapped Ions

June 25, 2009
Author(s)
Michael J. Biercuk, Hermann Uys, Aaron Vandevender, Nobuyasu Shiga, Wayne M. Itano, John J. Bollinger
We present a detailed experimental study of the Uhrig Dynamical Decoupling (UDD) sequence in a variety of noise environments. Our qubit system consists of a crystalline array of 9Be + ions confined in a Penning trap. We use an electron-spin-flip transition

Entangled Mechanical Oscillators

June 4, 2009
Author(s)
John D. Jost, Jonathan Home, Jason Amini, David Hanneke, R. Ozeri, Christopher Langer, John J. Bollinger, Dietrich G. Leibfried, David J. Wineland
Quantum mechanics describes the state and evolution of isolated systems, where entangled and superposition states can be created. Its application to large systems led Schr dinger to posit his famous cat, which exists in a superposition of alive and dead

Optimized Dynamical Decoupling in a Model Quantum Memory

April 23, 2009
Author(s)
Michael J. Biercuk, Hermann Uys, Aaron Vandevender, N. Shiga, Wayne M. Itano, David J. Wineland, John J. Bollinger
We demonstrate the efficacy of optimized dynamical decoupling pulse sequences in suppressing phase errors in a model quantum memory. Our experimental system consists of a crystalline array of trapped 9Be + ions in which we drive a qubit transition at $\sim