Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Wayne M. Itano (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 387

The quantum Zeno paradox, 42 years on

January 25, 2019
Author(s)
Wayne M. Itano
The term 'quantum Zeno paradox' or 'quantum Zeno effect' refers to the slowing down of the evolution of a quantum system as it is observed more and more frequently. In 1977, Misra and Sudarshan gave a theoretical demonstration of its existence. There has

Hyperfine-mediated electric quadrupole shifts in Al+ and In+ ion clocks

April 6, 2017
Author(s)
Kyle P. Beloy, David R. Leibrandt, Wayne M. Itano
We evaluate the electric quadrupole moments of the 1S0 and 3P0 clock states of 27Al+ and 115In+. To capture all dominant contributions, our analysis extends through third order of perturbation theory and includes hyperfine coupling of the electrons to both

Early observations of macroscopic quantum jumps in single atoms

March 25, 2015
Author(s)
Wayne M. Itano, James C. Bergquist, David J. Wineland
The observation of intermittent fluorescence of a single atomic ion, a phenomenon better known as 'macroscopic quantum jumps,' was an important early scientific application of the three-dimensional rf quadrupole (Paul) trap. The prediction of the

Diamagnetic correction to the 9 Be + ground-state hyperfine constant

July 21, 2011
Author(s)
Nobuyasu Shiga, Wayne M. Itano, John J. Bollinger
We report an experimental determination of the diamagnetic correction to the 9Be + ground state hyperfine constant A. We measured A = −625 008 837.371(11) Hz at a magnetic field B of 4.4609 T. Comparison with previous results, obtained at lower values of B

Preserving quantum coherence using optimized open-loop control techniques

May 16, 2010
Author(s)
Michael J. Biercuk, Hermann Uys, Aaron Vandevender, Nobuyasu Shiga, Wayne M. Itano, John J. Bollinger
We describe experimental and theoretical studies of open-loop quantum control techniques known as dynamical decoupling (DD) for the suppression of decoherence-induced errors in quantum systems. Our experiments on trapped atomic ion qubits demonstrate that

High-Fidelity Quantum Control Using 9Be+ Ion Crystals in a Penning Trap

August 19, 2009
Author(s)
Michael J. Biercuk, Hermann Uys, Aaron Vandevender, Nobuyasu Shiga, Wayne M. Itano, John J. Bollinger
We provide an introduction to the use of ion crystals in a Penning trap for experiments in quantum information. Macroscopic Penning traps allow for the containment of a few to a few million atomic ions whose internal states may be used in quantum

Experimental Uhrig Dynamical Decoupling Using Trapped Ions

June 25, 2009
Author(s)
Michael J. Biercuk, Hermann Uys, Aaron Vandevender, Nobuyasu Shiga, Wayne M. Itano, John J. Bollinger
We present a detailed experimental study of the Uhrig Dynamical Decoupling (UDD) sequence in a variety of noise environments. Our qubit system consists of a crystalline array of 9Be + ions confined in a Penning trap. We use an electron-spin-flip transition

Frequency Measurements of Al+ and Hg+ Optical Standards

June 8, 2009
Author(s)
Wayne M. Itano, James C. Bergquist, Till P. Rosenband, David J. Wineland, David Hume, Chin-wen Chou, Steven R. Jefferts, Thomas P. Heavner, Tom Parker, Scott Diddams, Tara Fortier
Frequency standards based on narrow optical transitions in 27Al+ and 199Hg+ ions have been developed at NIST. Both standards have absolute reproducibilities of a few parts in 10 17. This is about an order of magnitude better than the fractional uncertainty

Optimized Dynamical Decoupling in a Model Quantum Memory

April 23, 2009
Author(s)
Michael J. Biercuk, Hermann Uys, Aaron Vandevender, N. Shiga, Wayne M. Itano, David J. Wineland, John J. Bollinger
We demonstrate the efficacy of optimized dynamical decoupling pulse sequences in suppressing phase errors in a model quantum memory. Our experimental system consists of a crystalline array of trapped 9Be + ions in which we drive a qubit transition at $\sim

Prolonging qubit coherence: dynamic decoupling schemes studied in a Penning ion trap

February 2, 2009
Author(s)
Hermann Uys, Michael J. Biercuk, Aaron Vandevender, N. Shiga, Wayne M. Itano, John J. Bollinger
We present a study of dynamical decoupling schemes for the suppression of phase erros due to various noise environments using ions in a Penning ion trap as a model ensemble of qubits. By injecting frequency noise we demonstrate that in an Ohmic noise

Quantum Teleportation with Atomic Qubits

October 16, 2008
Author(s)
J Chiaverini, T Schaetz, Joseph W. Britton, Wayne M. Itano, John D. Jost, Emanuel Knill, C. Langer, Dietrich Leibfried, R Ozeri, David J. Wineland

Alpha-Dot or Not: Comparison of Two Single Atom Optical Clocks

October 5, 2008
Author(s)
Till P. Rosenband, David Hume, Chin-Wen Chou, J.C. Koelemeij, A. Brusch, Sarah Bickman, Windell Oskay, Tara M. Fortier, Jason Stalnaker, Scott A. Diddams, Nathan R. Newbury, William C. Swann, Wayne M. Itano, David J. Wineland, James C. Bergquist
Repeated measurements of the frequency ratio of Hg + and Al + single-atom optical clocks over the course of a year yield a constraint on the possible temporal variation of the fine-structure constant a. The time variation of the measured ratio corresponds