Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: David J. Wineland (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 482

High-fidelity laser-free universal control of trapped ion qubits

September 8, 2021
Author(s)
Raghavendra Srinivas, Emanuel Knill, Robert Sutherland, Alexander T. Kwiatkowski, Hannah M. Knaack, Scott Glancy, David J. Wineland, Shaun C. Burd, Dietrich Leibfried, Andrew C. Wilson, David T. Allcock, Daniel Slichter
Universal control of multiple qubits—the ability to entangle qubits and to perform arbitrary individual qubit operations—is a fundamental resource for quantum computing, simulation and networking. Qubits realized in trapped atomic ions have shown the

Quantum amplification of boson-mediated interactions

May 13, 2021
Author(s)
Shaun C. Burd, Raghavendra Srinivas, Hannah M. Knaack, Wenchao Ge, Andrew C. Wilson, David J. Wineland, Dietrich Leibfried, John J. Bollinger, David T. Allcock, Daniel Slichter
Strong and precisely controlled interactions between quantum objects are essential for quantum information processing\citeSackett2000,Majer2007}, simulation\citeBritton2012}, and sensing\citeHosten2016a,Cox2016}, and for the formation of exotic quantum

State Readout of a Trapped Ion Qubit Using a Trap-integrated Superconducting Photon Detector

January 6, 2021
Author(s)
Susanna L. Todaro, Varun Verma, Katherine C. McCormick, David T. Allcock, Richard Mirin, David J. Wineland, Sae Woo Nam, Andrew C. Wilson, Dietrich Leibfried, Daniel Slichter
We detect fluorescence photons emitted by a single $^9$Be$^+$ ion confined in a surface- electrode rf ion trap, using a superconducting nanowire single photon detector integrated directly into the trap. We achieve a qubit readout fidelity of 99.91(1) %

Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence

April 29, 2020
Author(s)
R. T. Sutherland, Raghavendra Srinivas, Shaun C. Burd, Hannah Knaack, Andrew C. Wilson, David J. Wineland, Dietrich Leibfried, David T. Allcock, Daniel Slichter, S. B. Libby
The dominant error sources for state-of-the-art implementations of laser-free trapped-ion entangling gates are decoherence of the qubit state and motion. The gate error from these decoherence mechanisms can be suppressed with additional control fields, or

Quantum Logic Spectroscopy with Ions in Thermal Motion

April 16, 2020
Author(s)
Daniel Kienzler, Yong Wan, Stephen Erickson, Jenny Wu, Andrew C. Wilson, David J. Wineland, Dietrich Leibfried
A mixed-species geometric phase gate has been proposed for implementing quantum logic spectroscopy on trapped ions, which combines probe and information transfer from the spectroscopy to the logic ion in a single pulse. We experimentally realize this

Quantum-enhanced sensing of a mechanical oscillator

July 22, 2019
Author(s)
Katherine C. McCormick, Jonas Keller, Shaun C. Burd, David J. Wineland, Andrew C. Wilson, Dietrich Leibfried
The use of special quantum states in interferometry with bosons to achieve sensitivities below the limits established by classical-like coherent dates back decades and has enjoyed immense success since its inception. Squeezed states, number states, and cat

An 27 Al+ quantum-logic clock with systematic uncertainty below 10 -18

July 15, 2019
Author(s)
Samuel M. Brewer, Jwo-Sy Chen, Aaron M. Hankin, Ethan Clements, Chin-wen Chou, David J. Wineland, David Hume, David Leibrandt
We describe an optical atomic clock based on quantum-logic spectroscopy of the 1S 0 3P 0 transition in 27Al + with a systematic uncertainty of 9.0 x 10-19 and a frequency stability of 1.2 X 10 -15/(T 1/2). A 25Mg + ion is simultaneously trapped with the

Measurements of 25 Mg + and 27 Al + magnetic constants for improved ion clock accuracy

July 15, 2019
Author(s)
Samuel M. Brewer, Jwo-Sy Chen, Aaron M. Hankin, Ethan Clements, Chin-wen Chou, Kyle Beloy, Will McGrew, Xiaogang Zhang, Robert J. Fasano, Daniele Nicolodi, Holly Leopardi, Tara Fortier, Scott Diddams, Andrew Ludlow, David J. Wineland, David Leibrandt, David Hume
We have measured the quadratic Zeeman coefficient for the 3P0 excited electronic state in 27Al+, C2=-71.944(24) MHz/T2 and the hyperfine constant of the 25Mg+ 2S1/2 ground electronic state, Ahfs = -596 254 250.981(45) Hz, with improved uncertainties. Both

Quantum amplification of motion of a mechanical oscillator

June 21, 2019
Author(s)
Shaun C. Burd, Raghavendra Srinivas, John J. Bollinger, Andrew C. Wilson, David J. Wineland, Dietrich G. Leibfried, Daniel H. Slichter, David T. Allcock
Detection of the weakest forces in nature and the search for new physics demand increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator’s motion is limited by quantum fluctuations that

Coherently displaced oscillator quantum states of a single trapped atom

June 11, 2019
Author(s)
Katherine C. McCormick, Jonas Keller, David J. Wineland, Andrew C. Wilson, Dietrich Leibfried
Coherently displaced harmonic oscillator number states of a harmonically bound ion can be coupled to two internal states of the ion by a laser-induced motional sideband interaction. The internal states can subsequently be read out in a projective

Quantum gate teleportation between separated zones of a trapped-ion processor

May 31, 2019
Author(s)
Yong Wan, Daniel Kienzler, Stephen D. Erickson, Karl H. Mayer, Ting R. Tan, Jenny J. Wu, Hilma H. Macedo De Vasconcelos, Scott C. Glancy, Emanuel H. Knill, David J. Wineland, Andrew C. Wilson, Dietrich G. Leibfried
Large-scale quantum computers will inevitably require quantum gate operations between widely separated qubits, even within a single quantum information processing device. Nearly two decades ago, Gottesman and Chuang proposed a method for implementing such

Trapped-ion spin-motion coupling with microwaves and a near-motional oscillating magnetic field gradient

April 26, 2019
Author(s)
Raghavendra Srinivas, Shaun C. Burd, R. T. Sutherland, Andrew C. Wilson, David J. Wineland, Dietrich G. Leibfried, David T. Allcock, Daniel H. Slichter
We present a new method of spin-motion coupling for trapped ions using microwaves and a magnetic field gradient oscillating close to the ions' motional frequency. We demonstrate and characterize this coupling experimentally using a single ion in a surface