Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by:

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 226 - 250 of 615

Analysis of coincidence-time loopholes in experimental Bell tests

March 4, 2015
Author(s)
B. G. Christensen, A. Hill, P. G. Kwiat, Emanuel Knill, Sae Woo Nam, Kevin Coakley, Scott Glancy, Krister Shalm, Y. Zhang
We apply a distance-based Bell-test analysis method ["Bell inequalities for continuously emitting sources" E. Knill et al. arXiv:14097732 (2014)] to three experimental data sets where conventional analyses failed or required additional assumptions. The

Bell Inequalities for Continuously Emitting Sources

March 4, 2015
Author(s)
Emanuel H. Knill, Scott C. Glancy, Sae Woo Nam, Kevin J. Coakley, Yanbao Zhang
A common experimental strategy for demonstrating non-classical correlations is to show violation of a Bell inequality by measuring a continuously emitted stream of entangled photon pairs. The measurements involve the detection of photons by two spatially

Photon-efficient high-dimensional quantum key distribution

February 4, 2015
Author(s)
Tian Zhong, Hongchao Zhou, Rob Horansky, Catherine Lee, Varun Verma, Adriana Lita, Alessandro Restelli, Joshua Bienfang, Richard Mirin, Thomas Gerrits, Sae Woo Nam, Francesco Marsili, Zhenshen Zhang, Ligong Wang, Dirk Englund, Gregory Wornell, Jeffrey Shapiro, Franco N. Wong
Quantum key distribution (QKD) is a secure communication technology whose security is guaranteed by the laws of physics. However, its widespread use has been hindered in part by low secure-key throughput due to the inherent loss and de-coherence of photons

Spectral Correlation Measurements at the Hong-Ou-Mandel Interference Dip

January 22, 2015
Author(s)
Thomas Gerrits, Francesco Marsili, Varun B. Verma, Lynden K. Shalm, Jeffrey A. Stern, Matthew Shaw, Richard P. Mirin, Sae Woo Nam
We present an efficient tool capable of measuring the spectral correlations between photons emerging from a Hong-Ou-Mandel interference configuration. We show that the Hong-Ou-Mandel interference visibility decreases as the photons’ frequency spread is

Pulse-to-pulse jitter measurement by photon correlation in high-ss lasers

January 20, 2015
Author(s)
Armand Lebreton, Abram Izo, Remy Braive, Nadia Belabas, Isabelle Sagnes, Francesco F. Marsili, Varun Verma, Sae Woo Nam, Thomas Gerrits, Isabelle Robert-Philip, Martin Stevens, Alexios Beveratos
The turn-on delay jitter in pulsed lasers in which a large fraction (β) of spontaneous emission is channeled into the lasing mode is measured by use of a photon correlation technique. This jitter is found to significantly increase with β, reaching values of

Materials Development for High Efficiency Superconducting Nanowire Single-Photon Detectors

January 1, 2015
Author(s)
Adriana E. Lita, Varun B. Verma, Robert D. Horansky, Jeffrey M. Shainline, Richard P. Mirin, Sae Woo Nam
Superconducting nanowire single-photon detectors (SNSPDs) based on ultra-thin films have become the preferred technology for applications that require high efficiency single-photon detectors with high speed, high timing resolution, and low dark count rates

Entanglement-based quantum communication secured by nonlocal dispersion cancellation

December 22, 2014
Author(s)
Catherine Lee, Zheshen Zhang, Greg Steinbrecher, Hongchao Zhou, Jacob Mower, Tian Zhong, Ligong Wang, Rob Horansky, Varun Verma, Richard Mirin, Francesco Marsili, Matthew Shaw, Sae Woo Nam, Gregory Wornell, Franco N. Wong, Jeffrey Shapiro, Dirk Englund
The principles of quantum mechanics enable new applications that address unsolved problems in communications, computation, and precision measurement. Quantum key distribution (QKD) enables participants to amplify secure information over long distances with

High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K

September 24, 2014
Author(s)
Varun B. Verma, Boris Korzh, Felix Bussieres, Robert D. Horansky, Adriana E. Lita, Francesco Marsili, Hugo Zbinden, Richard P. Mirin, Sae Woo Nam
We demonstrate that superconducting nanowire single photon detectors (SNSPDs) fabricated from amorphous WSi may be operated with > 75 % system detection efficiency at a temperature approaching seventy percent of the superconducting transition temperature

Photon-number uncertainty in a superconducting transition-edge sensor beyond resolved-photon-number determination

September 10, 2014
Author(s)
Zachary H. Levine, Boris L. Glebov, Alan L. Migdall, Thomas Gerrits, Brice R. Calkins, Adriana E. Lita, Sae Woo Nam
As part of an effort to extend fundamental single-photon measurements into the macroscopic regime, we explore how best to assign photon-number uncertainties to output waveforms of a superconducting Transition Edge Sensor (TES) and how those assignments

Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin-film

July 15, 2014
Author(s)
Varun B. Verma, Adriana E. Lita, Michael R. Vissers, Francesco Marsili, David P. Pappas, Richard P. Mirin, Sae Woo Nam
We present the characteristics of superconducting nanowire single photon detectors (SNSPDs) fabricated from amorphous Mo0.75Ge0.25 thin -films. Fabricated devices show a saturation of the internal detection efficiency at temperatures below 1 K, with system

Photon-Efficient High-Dimensional Quantum Key Distribution

June 12, 2014
Author(s)
Tian Zhong, Hongchao Zhou, Ligong Wang, Gregory Wornell, Zheshen Zhang, Jeffrey Shapiro, Franco N. Wong, Rob Horansky, Varun Verma, Adriana Lita, Richard Mirin, Thomas Gerrits, Sae Woo Nam, Alessandro Restelli, Joshua Bienfang, Francesco Marsili, Matthew Shaw
We demonstrate two high-dimensional QKD protocols - secure against collective Gaussian attacks - yielding up to 8.6 secure bits per photon and 6.7 Mb/s throughput, with 6.9 bits per photon after transmission through 20 km of fiber.

Direct generation of three-photon polarization entanglement

April 28, 2014
Author(s)
Deny Hamel, Krister Shalm, Hannes Hubel, Aaron J. Miller, Francesco F. Marsili, Varun Verma, Richard Mirin, Sae Woo Nam, Kevin Resch, Thomas Jennewein
Non-classical states of light are of fundamental importance for emerging quantum technologies. All optics experiments producing multi-qubit entangled states have until now relied on outcome post-selection, a procedure where only the measurement results