Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Andrew Ludlow (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 63 of 63

Compensation of Field-Induced Frequency Shifts in Ramsey Spectroscopy of Optical Clock Transitions

December 10, 2009
Author(s)
A. V. Taichenachev, V. I. Yudin, Christopher W. Oates, Barber W. Zeb, Nathan D. Lemke, Andrew Ludlow, U Sterr, Ch. Lisdat, F Reihle
We develop a modified version of Ramsey spectroscopy that uses an additional frequency shift to compensate frequency shifts induced by the excitation itself. In its simplest realization, this method uses a small step of the probe frequency during the two

A Spin-1/2 Optical Lattice Clock

August 7, 2009
Author(s)
Nathan D. Lemke, Andrew D. Ludlow, Zeb Barber, Tara M. Fortier, Scott A. Diddams, Yanyi Jiang, Steven R. Jefferts, Thomas P. Heavner, Thomas E. Parker, Christopher W. Oates
We experimentally investigate an optical clock based on 171Yb (I = 1/2) atoms confined in an optical lattice. We have evaluated all known frequency shifts to the clock transition, including the density-dependent collision shift, with an uncertainty of 0.19

Probing interactions between ultracold fermions

April 17, 2009
Author(s)
G K. Campbell, M M. Boyd, J W. Thomsen, M J. Martin, S Blatt, M D. Swallows, Travis L. Nicholson, Tara Fortier, Christopher W. Oates, Scott Diddams, Nathan D. Lemke, Pascal Naidon, Paul S. Julienne, Jun Ye, Andrew Ludlow
At ultracold temperatures, the Pauli exclusion principle suppresses collisions between identical fermions. This has motivated the development of atomic clocks using fermionic isotopes. However, by probing an optical clock transition with thousands of

Yb Optical Lattice Clock

November 23, 2008
Author(s)
Nathan D. Lemke, Andrew Ludlow, Zeb Barber, N Poli, C.W. Hoyt, Long-Sheng Ma, Jason Stalnaker, Christopher W. Oates, Leo Hollberg, James C. Bergquist, A. Brusch, Tara Fortier, Scott Diddams, Thomas P. Heavner, Steven R. Jefferts, Tom Parker
We describe the development and latest results of an optical lattice clock based on neutral Yb atoms, including investigations based on both even and odd isotopes. We report a fractional frequency uncertainty below 10 -15 for 171Yb.