Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Thomas Gerrits (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 146

Mixture model analysis of Transition Edge Sensor pulse height spectra

December 9, 2021
Author(s)
Kevin J. Coakley, Jolene D. Splett, Thomas Gerrits
To calibrate an optical transition edge sensor, for each pulse of the light source (e.g., pulsed laser), one must determine the ratio of the expected number of photons that deposit energy and the expected number of photons created by the laser. Based on

Multiphoton quantum metrology with neither pre- nor post-selected measurements

October 21, 2021
Author(s)
Chenglong You, Mingyuan Hong, Peter Bierhorst, Adriana Lita, Scott Glancy, Steven Kolthammer, Emanuel Knill, Sae Woo Nam, Richard Mirin, Omar Magana-Loaiza, Thomas Gerrits
The quantum statistical fluctuations of the electromagnetic field establish fundamental limits on the sensitivity of optical measurements. This fundamental limit, known as the shot-noise limit, imposes constraints on classical technologies, which can be

Witnessing the survival of time-energy entanglement through biological tissue and media

June 9, 2021
Author(s)
Daniel J. Lum, Michael Mazurek, Alexander Mikhaylov, Kristen M. Parzuchowski, Ryan M. Wilson, Marcus Cicerone, Ralph Jimenez, Thomas Gerrits, Martin Stevens, Charles Camp
In this work, we demonstrate the preservation of time-energy entanglement of near-IR photons through thick biological media ( 1.55 mm) and tissue ( 235 um) at room temperature. Using a Franson-type interferometer, we demonstrate interferometric contrast of

Photonic quantum simulations of SSH-type topological insulators with perfect state transfer

June 3, 2021
Author(s)
Thomas Gerrits, Sae Woo Nam, Adriana Lita, M. Stobinska, T Sturges, A. Buraczewski, W.R. Clements, Jelmer J. Renema, Ian Walmsley
Topological insulators could profoundly impact the fields of spintronics, quantum computing and low-power electronics. To enable investigations of these non-trivial phases of matter beyond the reach of present-day experiments, quantum simulations provide

Quantum circuits with many photons on a programmable nanophotonic chip

April 19, 2021
Author(s)
Adriana Lita, Sae Woo Nam, Thomas Gerrits, J. M. Arrazola, V. Bergholm, K Bradler, T R. Bromley, M J. Collins, I Dhand, A Fumagalli, A Goussev, L G. Helt, J Hundal, T Isacsson, R B. Israel, N Quesada, V D. Vaidya, Z Vernon, Y Zhang
Growing interest in quantum computing for practical applications has led to a surge in the availability of programmable machines for loading and executing quantum algorithms. Photonic quantum computers have been limited either to non-deterministic

Calibration of free-space and fiber-coupled single-photon detectors

September 14, 2020
Author(s)
Thomas Gerrits, Alan L. Migdall, Joshua C. Bienfang, John H. Lehman, Sae Woo Nam, Oliver T. Slattery, Jolene D. Splett, Igor Vayshenker, Chih-Ming Wang
We present our measurements of the detection efficiency of free-space and fiber-coupled single- photon detectors at wavelengths near 851 nm and 1533.6 nm. We investigate the spatial uniformity of one free-space-coupled silicon single-photon avalanche diode

Quantum-enhanced interferometry with large heralded photon-number states

June 14, 2020
Author(s)
G Thekkadath, M.E. Mycroft, B.A. Bell, C.G. Wade, A. Eckstein, David Phillips, R.B Patel, A. Buraczewski, Adriana Lita, Thomas Gerrits, Sae Woo Nam, M. Stobinska, A.I. Lvovsky, Ian Walmsley
Quantum phenomena such as entanglement can improve fundamental limits on the sensitivity of a measurement probe. In optical interferometry, a probe consisting of N entangled photons provides up to a sqrt(N) enhancement in phase sensitivity compared to a

Tuning between photon-number and quadrature measurements with weak-field homodyne detection

March 20, 2020
Author(s)
G Thekkadath, David Phillips, Jacob Bulmer, W.R. Clements, A. Eckstein, B.A. Bell, J Lugani, Adriana Lita, Sae Woo Nam, Thomas Gerrits, C.G. Wade, Ian Walmsley
Variable measurement operators enable optimization of strategies for testing quantum properties and for preparation of a range of quantum states. Here, we experimentally implement a weak-field homodyne detector that can continuously tune between performing

Detector-Agnostic Phase-Space Distributions

January 9, 2020
Author(s)
Thomas Gerrits, Adriana Lita, Sae Woo Nam, Jan Sperling, David Phillips, Jacob Bulmer, G Thekkadath, A. Eckstein, T Wolterink, J Lugani, Wolfgang Vogel, G.S. Agarwal, Christine Silberhorn, Ian Walmsley
The representation of quantum states via phase-space functions constitutes an intuitive technique to characterize light. However, the reconstruction of such distributions is challenging as it demands specific types of detectors and detailed models thereof

Calibration of free-space and fiber-coupled single-photon detectors

December 20, 2019
Author(s)
Thomas Gerrits, Alan L. Migdall, Joshua C. Bienfang, John H. Lehman, Sae Woo Nam, Jolene D. Splett, Igor Vayshenker, Chih-Ming Wang
We measure the detection efficiency of single-photon detectors at wavelengths near 851 nm and 1533.6 nm. We investigate the spatial uniformity of one free-space-coupled single-photon avalanche diode and present a comparison between fusion-spliced and

State-independent quantum tomography of a single-photon state by photon-number-resolving measurements

October 10, 2019
Author(s)
Thomas Gerrits, Adriana Lita, Sae Woo Nam, Rajveer Nehra, Aye Win, Miller Eaton, Niranjan Sridhar, R. Shahrokhshahi, O Pfister
A narrowband single-photon state was generated by heralding cavity-enhanced spontaneous parametric downconversion in a PPKTP optical parametric oscillator. The Wigner quasiprobability distribution function was reconstructed, in a state-independent manner

Quantum interference enables constant-time quantum information processing

July 19, 2019
Author(s)
Thomas Gerrits, Sae Woo Nam, Adriana E. Lita, M. Stobinska, A. Buraczewski, M. Moore, W.R. Clements, J.J. Renema, W.S. Kolthammer, A. Eckstein, I.A. Walmsley
It is an open question how fast information processing can be performed and whether quantum effects can speed up the best existing solutions. Signal extraction, analysis, and compression in diagnostics, astronomy, chemistry, and broadcasting build on the

Towards a source of entangled photon pairs in gallium phosphide

May 9, 2019
Author(s)
Paulina S. Kuo, Peter G. Schunemann, Mackenzie Van Camp, Varun B. Verma, Thomas Gerrits, Sae Woo Nam, Richard P. Mirin
We investigate parametric down-conversion in orientation-patterned GaP. Pumped at 865 nm, the signal and idler are at 1350 nm and 2400 nm, respectively.

Generating polarization-entangled photon pairs in domain-engineered PPLN

May 7, 2019
Author(s)
Paulina S. Kuo, Varun B. Verma, Thomas Gerrits, Sae Woo Nam, Richard P. Mirin
Using a periodically poled LiNbO3 crystal that is domain-engineered for two simultaneous type-II down-conversion processes, we demonstrated polarization-entangled photon-pair generation.

Integrated transition edge sensors on lithium niobate waveguides

May 7, 2019
Author(s)
Thomas Gerrits, Adriana Lita, Richard Mirin, Sae Woo Nam, Jan P. Hoepker, Stephan Krapick, Harald Herrmann, Raimund Ricken, Victor Quiring, Christine Silberhorn, Tim J. Bartley
We show the proof-of-principle detection of light at 1550 nm coupled evanescently from a lithium niobate waveguide to a superconducting transition edge sensor. The coupling efficiency strongly depends on the polarization, the overlap between the evanescent

Indistinguishable single-mode photons from spectrally engineered biphotons

April 15, 2019
Author(s)
Thomas Gerrits, Adriana E. Lita, Sae Woo Nam, Changchen Chen, Jane Heyes, Kyung-Han Hong, Jeffrey Shapiro, Franco N. Wong
We use pulsed spontaneous parametric down-conversion in KTiOPO4, with a Gaussian phasematching function and a transform-limited Gaussian pump, to achieve near-unity spectral purity in heralded single photons at telecommunication wavelength. Theory shows

Multi-pulse fitting of transition edge sensor signals from a near-infrared continuous-wave source

December 11, 2018
Author(s)
Thomas Gerrits, Adriana E. Lita, Sae Woo Nam, Jianwei Lee, Lijiong Shen, Alessandro Cere, Christian Kurtsiefer
Transition-edge sensors (TESs) are photon-number resolving calorimetric spectrometers with near unit efficiency. Their recovery time, which is on the order of microseconds, limits the number resolving ability and timing accuracy in high photon-flux

Approximating vibronic spectroscopy with imperfect quantum optics

November 23, 2018
Author(s)
W.R. Clements, Jelmer Renema, Andreas Eckstein, Antonio A. Valido, Adriana Lita, Thomas Gerrits, Sae Woo Nam, Steven Kolthammer, Joonsuk Huh
We study the impact of experimental imperfections on a recently proposed protocol for performing quantum simulations of vibronic spectroscopy. Specifically, we propose a method for quantifying the impact of these imperfections, optimizing an experiment to

On the scalability of parametric down-conversion for generating higher-order Fock states

October 18, 2018
Author(s)
Thomas Gerrits, Adriana Lita, Sae Woo Nam, Johannes Tiedau, Tim J. Bartley, Georg Harder, Christine Silberhorn
Spontaneous parametric down-conversion (SPDC) is the most widely-used method to generate higher-order Fock states (n>2). Yet, a consistent performance analysis from fundamental principles is missing. Here we address this problem by analyzing state fidelity

Randomness Extraction from Bell Violation with Continuous Parametric Down-Conversion

October 9, 2018
Author(s)
Thomas Gerrits, Sae Woo Nam, Adriana Lita, Lijiong Shen, Jianwei Lee, Le Phuc Thinh, Jean-Daniel Bancal, Alessandro Cere
We present a violation of the CHSH inequality without the fair sampling assumption with a continuously pumped photon pairs source combined with two high efficiency superconducting detectors. Due to the continuous nature of the source, the choice of the

Short-wave infrared compressive imaging of single photons

June 6, 2018
Author(s)
Thomas Gerrits, Daniel Lum, Varun B. Verma, John Howell, Richard P. Mirin, Sae Woo Nam
We present a short-wave infrared (SWIR) single photon camera based on a single superconducting nanowire single photon detector (SNSPD) and compressive imaging. We show SWIR single photon imaging at a megapixel resolution with a low signal-to-background