Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Marty Stevens (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 76 - 100 of 133

Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot

February 28, 2011
Author(s)
Varun B. Verma, Martin J. Stevens, Kevin L. Silverman, Neville Dias, Akash Garg, James J. Coleman, Richard P. Mirin
We demonstrate photon antibunching from a single lithographically defined quantum dot fabricated by electron beam lithography, wet chemical etching, and overgrowth of the barrier layers by metalorganic chemical vapor deposition. Measurement of the second

Characterization of high-purity, pulsed squeezed light at telecom wavelengths from pp-KTP for quantum information applications

December 1, 2010
Author(s)
Thomas Gerrits, Burm Baek, Martin J. Stevens, Brice R. Calkins, Adriana E. Lita, Scott C. Glancy, Emanuel H. Knill, Sae Woo Nam, Richard P. Mirin, Robert Hadfield, Ryan Bennink, Warren Grice, Sander N. Dorenbos, Tony Zijlstra, Teun Klapwijk, Val Zwiller
Pure optical squeezing in a single mode is highly desirable for quantum information applications such as continuous variable quantum computing and the generation of optical Schrödinger cat states. To generate optical cat states, photons are subtracted from

Joint spectral distribution of a periodically poled KTP source for quantum information applications

July 23, 2010
Author(s)
Thomas Gerrits, Burm Baek, Martin J. Stevens, Tracy S. Clement, Sae Woo Nam, Robert Hadfield, Ryan Bennink, Warren Grice, Sander N. Dorenbos, Tony Zijlstra, Teun Klapwijk, Val Zwiller
We present our experimental results obtained from a periodically poled KTP (pp-KTP) crystal designed to produce a pure squeezed vacuum near 1550 nm. A pure squeezed vacuum in a single mode is one of the building blocks towards high fidelity optical cat

Observation of Transparency of Erbium-doped Silicon nitride in photonic crystal nanobeam cavities

June 14, 2010
Author(s)
Yiyang Gong, Maria Makarova, Selcuk Yerci, Rui Li, Martin Stevens, Burm Baek, Sae Woo Nam, Luca Dal Negro, Jelena Vuckovic
One dimensional nanobeam photonic crystal cavities are fabricated in an Er-doped amorphous silicon nitride layer. Photoluminescence from the cavities around 1.54 mm is studied at cryogenic and room temperatures at different optical pump powers. The

Single photon detection timing jitter in a visible light photon counter

June 1, 2010
Author(s)
Burm Baek, Kyle S. McKay, Martin J. Stevens, Jungsang Kim, Henry H. Hogue, Sae Woo Nam
Visible light photon counters (VLPCs) offer many attractive features as photon detectors, such as high quantum efficiency and photon number resolution.We report measurements of the single-photon timing jitter in a VLPC, a critical performance factor in a

Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform

January 25, 2010
Author(s)
Yiyang Gong, Maria Makarova, Selcuk Yerci, Rui Li, Martin Stevens, Burm Baek, Sae Woo Nam, Robert Hadfield, Sander N. Dorenbos, Val Zwiller, Luca Dal Negro, Jelena Vuckovic
Light emission at 1.54 mm from an Er-doped amorphous silicon nitride layer coupled to photonic crystal resonators at cryogenic and room temperatures and under varying optical pump powers has been studied. The results demonstrate that small mode volume

High-Order Coherences of Chaotic and Coherent Optical States

January 12, 2010
Author(s)
Martin J. Stevens, Burm Baek, Eric Dauler, Andrew J. Kerman, Richard J. Molnar, Scott A. Hamilton, Karl Berggren, Richard P. Mirin, Sae Woo Nam
We demonstrate a new approach to measuring high-order temporal coherences that uses a four-element superconducting nanowire single-photon detector. The four independent, interleaved single-photonsensitive elements parse a single spatial mode of an optical

Measuring high-order coherences of chaotic and coherent optical states

August 24, 2009
Author(s)
Martin J. Stevens, Burm Baek, Eric Dauler, Andrew J. Kerman, Richard J. Molnar, Scott A. Hamilton, Karl Berggren, Richard P. Mirin, Sae Woo Nam
We demonstrate a new approach to measuring high-order temporal coherences that uses a four-element superconducting nanowire single-photon detector (SNSPD) in which four independent, single-photon-sensitive elements are interleaved over a single spatial

Third- and fourth-order coherences measured with a multi-element superconducting nanowire single-photon detector

May 29, 2009
Author(s)
Martin J. Stevens, Burm Baek, Eric Dauler, Andrew J. Kerman, Richard J. Molnar, Scott A. Hamilton, Karl Berggren, Richard P. Mirin, Sae Woo Nam
We demonstrate a technique for measuring third- and fourth-order coherences using a multi-element detector consisting of four independent, interleaved superconducting nanowire single-photon detectors, and observe strong bunching from a chaotic light source

Measuring intensity correlations with a two-element superconducting nanowire single-photon detector

November 24, 2008
Author(s)
Eric Dauler, Martin Stevens, Burm Baek, Richard J. Molnar, Scott A. Hamilton, Richard Mirin, Sae Woo Nam, Karl Berggren
Second-order intensity correlation measurements were made using a two-element superconducting nanowire single photon detector (SNSPD) without the need for an optical beam splitter. This approach can be used to obtain a 50-ps full width at half maximum

Diagnosis of Pulsed Squeezing in Multiple Temporal Modes

August 26, 2008
Author(s)
Scott C. Glancy, Emanuel H. Knill, Thomas Gerrits, Tracy S. Clement, Martin J. Stevens, Sae Woo Nam, Richard P. Mirin
When one makes squeezed light by downconversion of a pulsed pump laser, many temporal / spectral modes are simultaneously squeezed by different amounts. There is no guarantee that any of these modes matches the pump or the local oscillator used to measure

Ultra-low-noise all-fiber photon pair source

August 21, 2008
Author(s)
Shellee D. Dyer, Martin J. Stevens, Burm Baek, Sae Woo Nam
We demonstrate an all-fiber photon pair source with the highest coincidence-to-accidental ratio (CAR) reported to date in the fiber optic telecom C-band.