Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Adam Sirois (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 36 of 36

Circuit cavity electromechanics in the strong-coupling regime

March 9, 2011
Author(s)
John Teufel, Dale Li, Michael S. Allman, Katarina Cicak, Adam Sirois, Jed D. Whittaker, Raymond Simmonds
Demonstrating and exploiting the quantum nature of macroscopic mechanical objects would help us to investigate directly the limitations of quantum-based measurements and quantum information protocols, as well as to test long-standing questions about

Measurement crosstalk between two phase qubits coupled by a coplanar waveguide

September 14, 2010
Author(s)
Fabio Altomare, Katarina Cicak, Mika A. Sillanpaa, Michael S. Allman, Dale Li, Adam J. Sirois, Joshua Strong, Jae Park, Jed D. Whittaker, Raymond W. Simmonds
We investigate measurement crosstalk in a system with two flux-biased phase qubits coupled by a resonant coplanar waveguide cavity. After qubit measurement, the superconducting phase undergoes damped oscillations in a deep anharmonic potential producing a

Tripartite interactions between two phase qubits and a resonant cavity

August 1, 2010
Author(s)
Fabio Altomare, Jae Park, Katarina Cicak, Mika Sillanpaa, Michael S. Allman, Adam J. Sirois, Joshua Strong, Jed D. Whittaker, Raymond Simmonds
The ability to create and manipulate the entanglement of a large number of quantum systems lies at the heart of emerging quantum information technologies. Thus far, multipartite entanglement has been achieved using various forms of quantum bits (qubits)

RFSQUID-Mediated Coherent Tunable Coupling Between a Superconducting Phase Qubit and a Lumped Element Resonator

April 29, 2010
Author(s)
Michael S. Allman, Fabio Altomare, Jed D. Whittaker, Katarina Cicak, Dale Li, Adam J. Sirois, Joshua Strong, John D. Teufel, Raymond W. Simmonds
We demonstrate coherent tunable coupling between a superconducting phase qubit and a lumpedelement resonator. The coupling strength is mediated by a flux-biased rf SQUID operated in the nonhysteretic regime. By tuning the applied flux bias to the rf SQUID

Low-loss superconducting resonant circuits using vacuum-gap -based microwave components

March 4, 2010
Author(s)
Katarina Cicak, Dale Li, Joshua Strong, Michael S. Allman, Fabio Altomare, Adam J. Sirois, Jed D. Whittaker, Raymond W. Simmonds
We have produced high quality resonant microwave circuits through developing a vacuum-gap technology for fabricating lumped-element capacitive and inductive components. We use micromachining to eliminate amorphous dielectric materials leaving vacuum in

Frequency-Tunable Josephson Junction Resonator for Quantum Computing

June 23, 2007
Author(s)
Kevin Osborn, Joshua Strong, Adam J. Sirois, Raymond W. Simmonds
We have fabricated and measured a high-Q Josephson junction resonator with a tunable resonance frequency. A dc magnetic flux allows the resonance frequency to be changed by over 10%. Weak coupling to the environment allows a quality factor of 7000 in the