Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: John Mates (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 61

Kinetic inductance current sensor for visible to near-infrared wavelength transition-edge sensor readout

November 6, 2024
Author(s)
Paul Szypryt, Douglas Bennett, Ian Fogarty Florang, Joseph Fowler, Jiansong Gao, Andrea Giachero, Ruslan Hummatov, Adriana Lita, John Mates, Sae Woo Nam, Daniel Swetz, Joel Ullom, Michael Vissers, Jordan Wheeler
Single-photon detectors based on the superconducting transition-edge sensor are used in a number of visible to near-infrared applications, particularly for photon-number-resolving measurements in quantum information science. To be practical for large-scale

Flexible superconducting wiring for integration with low temperature detector and readout fabrication

September 14, 2024
Author(s)
Galen O'Neil, Daniel Swetz, Joel Ullom, Daniel Schmidt, Joel Weber, John Mates, William Doriese, Mark Keller, Michael Vissers, Kelsey Morgan, Robinjeet Singh
We present a method of creating high density superconducting flexible wiring on flexible thin silicon substrates. The flexible wiring, called SOI flex, is created by depositing superconducting wiring on a silicon on insulator (SOI) wafer, selectively

Effects of Stray Magnetic Field on Transition-edge Sensors in Gamma-ray Microcalorimeters

May 19, 2024
Author(s)
Mark Keller, Abigail Wessels, Dan Becker, Douglas Bennett, Matthew Carpenter, Mark Croce, Jozsef Imrek, Johnathon Gard, John Mates, Kelsey Morgan, Nathan Ortiz, Dan Schmidt, Katherine Schreiber, Daniel Swetz, Joel Ullom
Superconducting transition-edge sensors (TESs) used in x-ray and γ-ray microcalorimeters suffer degraded performance if cooled in a magnetic field B sufficient to trap flux in the sensors. We report measurements of γ-ray TESs before and after implementing

A tabletop x-ray tomography instrument for nanometer-scale imaging: demonstration of the 1,000-element transition-edge sensor subarray

August 1, 2023
Author(s)
Paul Szypryt, Nathan J. Nakamura, Dan Becker, Douglas Bennett, Amber L. Dagel, W.Bertrand (Randy) Doriese, Joseph Fowler, Johnathon Gard, J. Zachariah Harris, Gene C. Hilton, Jozsef Imrek, Edward S. Jimenez, Kurt W. Larson, Zachary H. Levine, John Mates, Daniel McArthur, Luis Miaja Avila, Kelsey Morgan, Galen O'Neil, Nathan Ortiz, Christine G. Pappas, Dan Schmidt, Kyle R. Thompson, Joel Ullom, Leila R. Vale, Michael Vissers, Christopher Walker, Joel Weber, Abigail Wessels, Jason W. Wheeler, Daniel Swetz
We report on the 1,000-element transition-edge sensor (TES) x-ray spectrometer implementation of the TOMographic Circuit Analysis Tool (TOMCAT). TOMCAT combines a high spatial resolution scanning electron microscope (SEM) with a highly efficient and

Signal Readout for Transition-Edge Sensor X-ray Imaging Spectrometers

May 20, 2023
Author(s)
Hiroki Akamatsu, W.Bertrand (Randy) Doriese, John Mates, Brian Jackson
Arrays of low-temperature microcalorimeters provide a promising technology for X-ray astrophysics: the imaging spectrometer. A camera with at least several thousand pixels, each of which has an energy-resolving power (E∕ΔE_FWHM) of a few thousand across a

Proceedings of the 2nd CREST Nano-Virtual-Labs Joint Workshop on Superconductivity

October 12, 2021
Author(s)
Kent D. Irwin, James A. Beall, W.Bertrand (Randy) Doriese, William Duncan, S. L. Ferreira, Gene C. Hilton, Rob Horansky, John Mates, Nathan A. Tomlin, Galen O'Neil, Carl D. Reintsema, Dan Schmidt, Joel Ullom, Leila R. Vale
Superconductivity is a powerful tool for the detection of electromagnetic radiation and the energy in particle interactions. One leading superconducting detector technology is the superconducting transition-edge sensor (TES), which uses a superconducting

Design of a 3000 pixel transition-edge sensor x-ray spectrometer for microcircuit tomography

August 1, 2021
Author(s)
Paul Szypryt, Douglas Bennett, William J. Boone, Amber L. Dagel, G Dalton, William Doriese, Malcolm Durkin, Joseph Fowler, Edward Garboczi, Jonathon D. Gard, Gene Hilton, Jozsef Imrek, E S. Jimenez, Vincent Y. Kotsubo, K Larson, Zachary H. Levine, John Mates, D McArthur, Kelsey Morgan, Nathan J. Nakamura, Galen O'Neil, Nathan Ortiz, Christine G. Pappas, Carl Reintsema, Dan Schmidt, Daniel Swetz, K R. Thompson, Joel Ullom, C Walker, Joel C. Weber, Abigail Wessels, J W. Wheeler
Feature sizes in integrated circuits have decreased substantially over time, and it has become increasingly difficult to three-dimensionally image these complex circuits after fabrication. This can be important for process development, defect analysis, and

A Model for Excess Johnson Noise in Superconducting Transition-edge Sensors

May 18, 2021
Author(s)
Abigail Wessels, Kelsey Morgan, Dan Becker, Johnathon Gard, Gene C. Hilton, John Mates, Carl D. Reintsema, Dan Schmidt, Daniel Swetz, Joel Ullom, Leila R. Vale, Douglas Bennett
Transition-Edge Sensors (TESs) are two-dimensional superconducting films used to detect energy or power. These detectors are voltage biased in the superconducting transition where the film resistance is both finite and a strong function of temperature

Improved plutonium and americium photon branching ratios from microcalorimeter gamma spectroscopy

October 11, 2020
Author(s)
M. D. Yoho, K. E. Koehler, Dan Becker, Douglas Bennett, M. H. Carpenter, M. P. Croce, J. D. Gard, John Mates, D. J. Mercer, Nathan Ortiz, Dan Schmidt, C. M. Smith, Daniel Swetz, A. D. Tollefson, Joel Ullom, Leila R. Vale, Abigail Wessels, D. T. Vo
Photon branching ratios are critical input data for activities such as nuclear materials protection and accounting because they allow material compositions to be extracted from measurements of gamma-ray intensities. Uncertainties in these branching ratios

Crosstalk in microwave SQUID multiplexers

November 15, 2019
Author(s)
John A. Mates, Daniel T. Becker, Douglas A. Bennett, Bradley J. Dober, Johnathon D. Gard, Gene C. Hilton, Daniel S. Swetz, Leila R. Vale, Joel N. Ullom
Low-temperature detector technologies provide extraordinary sensitivity for applications ranging from precision measurements of the cosmic microwave background to high-resolution, high-rate x-ray, and c-ray spectroscopy. To utilize this sensitivity, new

Expanding the Capability of Microwave Multiplexed Readout for Fast Signals in Microcalorimeters

November 11, 2019
Author(s)
Kelsey M. Morgan, Daniel T. Becker, Douglas A. Bennett, Johnathon D. Gard, Jozsef Imrek, John A. Mates, Christine G. Pappas, Carl D. Reintsema, Daniel R. Schmidt, Joel N. Ullom, Joel C. Weber, Abigail L. Wessels, Daniel S. Swetz
Microwave SQUID multiplexing has become a key technology for reading out large arrays of X-ray and gamma-ray microcalorimeters with mux factors of 100 or more. The desire for fast X-ray pulses that accommodate photon counting rates of hundreds or thousands

Configurable error correction of code-division multiplexed TES detectors with a cryotron switch

June 10, 2019
Author(s)
Joel C. Weber, Joseph W. Fowler, Malcolm S. Durkin, Kelsey M. Morgan, John A. Mates, Douglas A. Bennett, William B. Doriese, Daniel R. Schmidt, Gene C. Hilton, Daniel S. Swetz, Joel N. Ullom
The development of a superconducting analog to the transistor with extremely low power dissipation will accelerate the proliferation of low-temperature circuitry operating in the milliKelvin regime. The thin-film, magnetically actuated cryotron switch is a

Microwave SQUID multiplexing for the Lynx x-ray microcalorimeter

March 22, 2019
Author(s)
Douglas A. Bennett, John A. Mates, Simon R. Bandler, Daniel T. Becker, Joseph W. Fowler, Johnathon D. Gard, Gene C. Hilton, K D. Irwin, Kelsey M. Morgan, Carl D. Reintsema, Kazuhiro Sakai, Daniel R. Schmidt, Stephen J. Smith, Daniel S. Swetz, Joel N. Ullom, Leila R. Vale, Abigail L. Wessels
The Lynx x-ray microcalorimeter (LXM) is an imaging spectrometer for the Lynx satellite mission, an x-ray telescope being considered by NASA to be a new flagship mission. Lynx will enable unique astrophysical observations into the x-ray universe due to its