Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Ian Coddington (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 250

Open-path measurement of stable water isotopologues using mid-infrared dual-comb spectroscopy

September 8, 2023
Author(s)
Daniel Herman, Griffin Mead, Fabrizio Giorgetta, Esther Baumann, Nathan Malarich, Brian Washburn, Nathan R. Newbury, Ian Coddington, Kevin Cossel
We present an open-path mid-infrared dual-comb spectrometer (DCS) capable of precise measurement of the stable water isotopologues H216O and HD16O. This system runs in a remote configuration at a rural test site with high uptime and achieves a precision of

Dual-Comb Spectroscopy of Carbon Dioxide and Methane Across a 14.5 km Long Outdoor Path

September 1, 2023
Author(s)
Fabrizio Giorgetta, Esther Baumann, Brian Washburn, Nathan Malarich, Jean-Daniel Deschenes, Ian Coddington, Nathan Newbury, Kevin Cossel
Greenhouse-gas dual-comb spectroscopy is extended to a city-scale 14.5-km path length using remote receiver and data acquisition. This configuration enables lower link losses and longer path lengths compared to folded paths with a remote retroreflector

MODELLING AND REMOVING DIGITIZER NONLINEARITY FOR ACCURATE DUAL FREQUENCY COMB SPECTROSCOPY

August 15, 2023
Author(s)
Nathan Malarich, Kevin Cossel, JEAN-DANIEL DESCHENES, Fabrizio Giorgetta, Brian Washburn, Nathan Newbury, Ian Coddington, Jerome Genest
Operation of any dual-comb spectrometer requires digitization of the interference signal before further processing. Nonlinearities in the analog-to-digital conversion can alter the apparent gas concentration by multiple percent, limiting both precision and

Extending Dual-Comb Spectroscopy Path Length to 14.5 km by Separating Receiver from Transmitter

June 1, 2023
Author(s)
Fabrizio Giorgetta, Esther Baumann, Brian Washburn, Nathan Malarich, J.-D. Deschenes, Ian Coddington, Nathan Newbury, Kevin Cossel
We present dual-comb spectroscopy across a 14.5-km path using remote receiver and data acquisition. This configuration results in lower link losses compared to open-path configurations with co-located transmitter and receiver.

Validation of open-path dual-comb spectroscopy against an O2 background

January 30, 2023
Author(s)
Nathan Malarich, Brian Washburn, Kevin Cossel, Fabrizio Giorgetta, Griffin Mead, Daniel Herman, Nathan R. Newbury, Ian Coddington
Dual-comb spectroscopy measures greenhouse gas concentrations over kilometer-length open-air paths with high precision. However, characterizing the absolute accuracy of these outdoor measurements is challenging, as most gas species have fluctuating

A compact mid-infrared dual-comb spectrometer for outdoor spectroscopy

April 9, 2022
Author(s)
Gabriel Ycas, Fabrizio Giorgetta, Jacob T. Friedlein, Daniel Herman, Kevin Cossel, Esther Baumann, Nathan R. Newbury, Ian Coddington
This manuscript describes the design of a robust, mode-locked laser based, mid-infrared dual- comb spectrometer operating in the 3.1-µm to 4-µm spectral window. The design represents an improvement in signal-to-noise, system size, power consumption and

Obtaining More Energetic Modelocked Pulses From a SESAM Fiber Laser

July 6, 2020
Author(s)
Nathan R. Newbury, Laura Sinclair, Ian Coddington, Stefan Droste, Shaokang Wang, chaoran Tu, Seyed E. Jamali, Thomas Carruthers, Curtis Menyuk
Increasing the output power by increasing the pulse energy without increasing the noise level or decreasing the bandwidth is a major optimization goal for femtosecond fiber lasers that produce frequency combs. Here, we perform a computational study to

Dual-comb photoacoustic spectroscopy

June 19, 2020
Author(s)
Jacob T. Friedlein, Esther Baumann, Kimberly Briggman, Gabriel M. Colacion, Fabrizio R. Giorgetta, Daniel I. Herman, Nathan R. Newbury, Jeeseong Hwang, Ian R. Coddington, Kevin C. Cossel, Gabriel Ycas, Christopher Yung, Eli V. Hoenig, Edgar F. Perez, Aaron Goldfain
Spectrally-resolved photoacoustic imaging is a promising technique for label-free imaging in optically scattering materials. However, this technique often requires acquisition of a separate image at each wavelength of interest. This reduces imaging speeds

Mid-Infrared Dual Frequency Comb Spectroscopy for Combustion Analysisin the 2.8 to 5 micron Spectral Region

June 7, 2020
Author(s)
Ian Coddington, Nathan R. Newbury, Greg Rieker, Amanda S. Makowiecki, Daniel Herman, Nazanin Hoghooghi, Elizabeth F. Strong, Gabriel Ycas, Fabrizio Giorgetta, Ryan Cole, Caelan Lapointe, Jeff Glusman, John Daily, Peter E. Hamlington
We demonstrate the application of mode-locked mid-infrared dual frequency comb spectroscopy for combustion analysis. With two settings of the same dual-comb system, the measurement spans 1500 cm-1 (2.8 to 5 microns) with 0.0067 cm-1 (200 MHz) point spacing

Multi-functional integrated photonics in the mid-infrared with suspended AlGaAs on silicon

September 18, 2019
Author(s)
Jeff Chiles, Nima Nader, Eric J. Stanton, Daniel Herman, Galan Moody, Biswarup Guha, Kartik Srinivasan, Scott Diddams, Ian Coddington, Nathan R. Newbury, Jeff Shainline, Sae Woo Nam, Richard Mirin, Jiangang Zhu, Juliet Gopinath, Connor Fredrick
The microscale integration of mid- and longwave-infrared photonics could enable the development of fieldable and reliable chemical sensors. The choice of material platform immediately determines the strength and types of optical nonlinearities available