Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Ian Coddington (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 101 - 125 of 250

Precision metrology with coherent dual frequency combs

May 12, 2013
Author(s)
Nathan R. Newbury, Esther Baumann, Ian R. Coddington, Fabrizio R. Giorgetta, Greg B. Rieker, Laura C. Sinclair, William C. Swann, Alexander M. Zolot
Frequency combs have enabled a wide range of applications because of their unique combination of coherence and broad bandwidth. The comb provides 100,000's of comb teeth at precise, well-known optical frequencies that can support broadband accurate

Optical two-way time and frequency transfer over free space

April 28, 2013
Author(s)
Fabrizio R. Giorgetta, William C. Swann, Laura C. Sinclair, Esther Baumann, Ian R. Coddington, Nathan R. Newbury
The transfer of high-quality time-frequency signals between remote locations underpins many applications, including precision navigation and timing, clock-based geodesy, long-baseline interferometry, coherent radar arrays, tests of general relativity and

Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene

December 1, 2012
Author(s)
Alexander M. Zolot, Fabrizio R. Giorgetta, Esther Baumann, William C. Swann, Ian R. Coddington, Nathan R. Newbury
The Doppler-limited spectra of methane between 176 THz and 184 THz (5870-6130 cm −1) and acetylene between 193 THz and 199 THz (6430-6630 cm −1) are acquired via comb-tooth resolved dual comb spectroscopy with frequency accuracy traceable to atomic

3D Precision Imaging with a Terahertz-bandwidth, Comb-calibrated Swept Laser

August 26, 2012
Author(s)
Esther Baumann, Fabrizio R. Giorgetta, Ian R. Coddington, Kevin O. Knabe, Laura C. Sinclair, William C. Swann, Nathan R. Newbury
A frequency-comb and MEMS-based external-cavity laser are integrated into a THz-bandwidth LIDAR system. Range to a diffuse target is measured at sub-msec update times, a comb-based precision/accuracy of 100 nm, and a resolution of 150 microns. Example 3D

A method for comparing remote optical clocks over a free-space optical link

July 9, 2012
Author(s)
William C. Swann, Fabrizio R. Giorgetta, Ian R. Coddington, Esther Baumann, Jean-Daniel Deschenes, Laura C. Sinclair, Alexander M. Zolot, Nathan R. Newbury
We demonstrate a method to compare optical clocks approaching 10 -17 uncertainties through the exchange of optical pulses from phase-locked frequency combs. We discuss results over a 120 m air path and prospects for longer distances.

Two-Way Link for Time Interval Comparison of Optical Clocks over Free-Space

May 11, 2012
Author(s)
Fabrizio R. Giorgetta, William C. Swann, Ian R. Coddington, Esther Baumann, Jean-Daniel Deschenes, Laura C. Sinclair, Alexander M. Zolot, Nathan R. Newbury
We demonstrate a free-space link for clock comparisons based on the two-way exchange of pulse trains from combs. The residual uncertainty is 5 * 10^17 in 100 seconds over a 120 m air path, with longer distances possible.

Broad bandwidth trace gas and standoff detection with infrared frequency comb sources

March 11, 2012
Author(s)
Nathan R. Newbury, Alexander M. Zolot, Esther Baumann, Fabrizio R. Giorgetta, Florian B. Adler, Ian R. Coddington, Kevin O. Knabe, Lora L. Nugent-Glandorf, Paul A. Williams, Scott A. Diddams, Tyler W. Neely
An optical frequency comb based on the output of a mode-locked femtosecond laser can be used in spectroscopic studies and sensing applications. The broad array of frequency modes simultaneously provides high spectral resolution and broad wavelength

Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz

February 15, 2012
Author(s)
Alexander M. Zolot, Fabrizio R. Giorgetta, Esther Baumann, Jeffrey W. Nicholson, William C. Swann, Ian R. Coddington, Nathan R. Newbury
We demonstrate a dual comb spectrometer using stabilized frequency combs spanning 176 THz to 219 THz (1370 nm to 1700 nm) in the near infrared. Measurements of amplitude and phase response at each individual comb tooth span the full 43 THz, generating ~430

High-resolution, high-accuracy dual comb spectroscopy with over 40 THz bandwidth

January 20, 2012
Author(s)
Alexander M. Zolot, Fabrizio R. Giorgetta, Esther Baumann, William C. Swann, Jeff Nicholson, Ian R. Coddington, Nathan R. Newbury
Most spectroscopic instruments directly measure optical wavelength, which is converted to frequency and calibrated against spectral features that have traditionally been measured using complicated frequency chain methods. In the past decade optical

Spectroscopy of the methane N3 Band with an accurate midinfrared coherent dual-comb spectrometer

December 28, 2011
Author(s)
Esther Baumann, Fabrizio R. Giorgetta, William C. Swann, Alexander M. Zolot, Ian R. Coddington, Nathan R. Newbury
We demonstrate a high-accuracy dual-comb spectrometer centered at 3.4 υm. The amplitude and phase spectra of the P,, Q, and partial R branches of the methane Ņ3 band are measured at 25 to 100 MHz point spacing with resolution under 10 kHz and a signal-to

Dual comb-based characterization of rapidly tuned lasers

October 20, 2011
Author(s)
Fabrizio R. Giorgetta, Esther Baumann, Ian R. Coddington, William C. Swann, Nathan R. Newbury, Zeb W. Barber, Peter Roos
Time-resolved, high-accuracy and high-resolution spectroscopy of rapidly tuned cw lasers is critical to realizing their full potential for sensing, but is not possible with conventional spectrometers. We demonstrate a coherent dual-comb-based spectrometer

A coherent dual-comb spectrometer at 3.4 ym for accurate line center measurement of methane

October 10, 2011
Author(s)
Esther Baumann, Fabrizio R. Giorgetta, Ian R. Coddington, William C. Swann, Alexander M. Zolot, Nathan R. Newbury
Doppler-broadened methane lines around 3.4 υm are measured with a coherent dual-comb spectrometer with an absolute-frequency axis. The obtained accuracy of the line-center frequency is 300 kHz, about 1 part per thousand of the linewidth.