Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Ian Coddington (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 226 - 250 of 250

Lidar with femtosecond fiber-laser frequency combs

July 8, 2007
Author(s)
Nathan R. Newbury, William C. Swann, Ian R. Coddington
Passively mode-locked fiber lasers produce a broad spectrum of light that is also highly phase-coherent. Such sources have clear potential for remote sensing because their broad spectrum permits high range resolution and the coherence permits operation at

Fiber laser-based frequency combs with high relative frequency stability

May 28, 2007
Author(s)
Nathan R. Newbury, William C. Swann, Ian R. Coddington, J. C. Bergquist, Scott Diddams, Luca Lorini
We describe our current low-noise fiber-laser frequency comb and present measurements of its residual instability. Through a comparison with a Ti:Sapphire frequency comb, we measure residual fractional frequency instabilities (Allan deviation) of 6x10 -17

Multi-octave optical coherence spanning hundreds of meters

May 6, 2007
Author(s)
Ian R. Coddington, Luca Lorini, William C. Swann, J. C. Bergquist, Y. Le Coq, C. W. Oates, Qudsia Quraishi, Jason Stalnaker, Scott Diddams, Nathan R. Newbury
We demonstrate coherent transfer of optical signals with radian level noise (in a 3.5 MHz bandwidth) through a series of laser systems spanning from 657 nm to 1535 nm and several hundred meter distances.

Residual stability of a fiber-based frequency comb

May 6, 2007
Author(s)
William C. Swann, Ian R. Coddington, Luca Lorini, Jason Stalnaker, J. C. Bergquist, Scott Diddams, Nathan R. Newbury
Abstract: We present measurements of the residual frequency stability across a fiber frequency comb by comparison through a Ti:sapphire frequency comb. We find 6 x 10 -17 stability at one second and 1 x 10 -18 at 1000 seconds.

Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter

May 1, 2007
Author(s)
Ian R. Coddington, William C. Swann, Luca Lorini, J. C. Bergquist, K Feder, Y. Le Coq, Jeffrey W. Nicholson, C. W. Oates, Qudsia Quraishi, Paul S. Westbrook, Scott Diddams, Nathan R. Newbury
Recent developments in stabilized lasers have resulted in ultrastable optical oscillators with spectral purities below 1 Hz refs 1-6. These oscillators are not transportable at present and operate at a single frequency. To realize their full potential, a

Radian-level coherent optical links over 100's of meters and 100's of terahertz

January 18, 2007
Author(s)
Ian R. Coddington, Qudsia Quraishi, Luca Lorini, William C. Swann, J. C. Bergquist, C. W. Oates, Scott Diddams, Nathan R. Newbury
We demonstrate coherent transfer of optical signals with radian level noise (in a 25 MHz bandwidth) through a series of laser systems spanning from 657 nm to 1550 nm over several hundred meter distances.

Fiber-laser frequency combs with subhertz relative linewidths

October 15, 2006
Author(s)
William C. Swann, John J. McFerran, Ian R. Coddington, Nathan R. Newbury, Ingmar Hartl, Martin E. Fermann, Paul S. Westbrook, Jeffrey W. Nicholson, K Feder, Carston Langrock, Martin M. Fejer
We investigate the comb linewidths of self-referenced, fiber-laser-based frequency combs by measuring the heterodyne beat signal between two independent frequency combs that are phase locked to a common cw optical reference. We demonstrate that the optical

Fiber Frequency Combs: Development and Applications

September 19, 2006
Author(s)
Nathan R. Newbury, William C. Swann, Ian R. Coddington, John J. McFerran
The output of a femtosecond fiber laser provides a comb of lines in frequency space that can be phase-locked to either a microwave or optical reference to form a stable frequency comb. We discuss the basic configuration of fiber laser-based frequency combs

Optical and microwave frequency synthesis with an integrated fiber frequency comb

June 5, 2006
Author(s)
Ingmar Hartl, Martin E. Fermann, William C. Swann, John J. McFerran, Ian R. Coddington, Qudsia Quraishi, Scott Diddams, Nathan R. Newbury, Carston Langrock, Martin M. Fejer, Paul S. Westbrook, Jeffrey W. Nicholson, K Feder
We demonstrate optical coherence over a broad spectral range of two independent fiber frequency combs. Additionally, we demonstrate microwave stability of better than 2x10 -14 in 1 second for an optically integrated fiber frequency comb.

Optical and microwave frequency synthesis with an integrated fiber frequency comb

May 21, 2006
Author(s)
L Hartl, Martin E. Fermann, W Swann, John J. McFerran, Ian R. Coddington, Qudsia Quraishi, Scott A. Diddams, Nathan R. Newbury, Carston Langrock, M M. Fejer, P. S. Westbrook, Jeffrey W. Nicholson, K Feder
We demonstrate optical coherence over a broad spectral range of two independent fiber frequency combs. Additionally, we demonstrate microwave stability of better than 2x10 -14 in 1 second for an optically integrated fiber frequency comb.

Driving Bose-Einstein-Condensate Vorticity With a Rotating Normal Cloud

November 1, 2001
Author(s)
P C. Haljan, Ian R. Coddington, P Engels, Eric A. Cornell
We have developed an evaporative cooling technique that accelerates the circulation of an ultra-cold 87Rb gas, confined in a static harmonicpotential. As a normal gas is evaporatively spun up and cooled below quantum degeneracy, it is found to nucleate