Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Alain Rufenacht (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 104

Cryocooled 10 V Programmable Josephson Voltage Standard

December 11, 2014
Author(s)
Alain Rufenacht, Logan A. Howe, Anna E. Fox, Robert E. Schwall, Paul D. Dresselhaus, Charles J. Burroughs, Samuel P. Benz
Improvements in fabrication and packaging of our 10 V Programmable Josephson Voltage Standard circuits have enabled the successful operation of these devices on a cryocooler. Limited cooling power and temperature oscillations at the chip must not

Cryocooled 10 V Programmable Josephson Voltage Standard

December 11, 2014
Author(s)
Alain Rufenacht, Logan A. Howe, Anna Fox, Robert E. Schwall, Paul Dresselhaus, Charles J. Burroughs, Samuel Benz
Implementation of programmable Josephson voltage standard (PJVS) circuits on cryocooler at 4 K is a challenge. The limited cooling power of the cryocoolers has to balance the heat dissipated by the PJVS circuit in order to maintain a stable temperature

Junction Yield Analysis for 10 V Programmable Josephson Voltage Standard Devices

December 5, 2014
Author(s)
Anna E. Fox, Paul D. Dresselhaus, Alain Rufenacht, Aric W. Sanders, Samuel P. Benz
Analysis of the Josephson junction yield in the National Institute of Standards and Technology 10 V Programmable Josephson Voltage Standard (PJVS) has been performed by fabricating and measuring over 25 million Nb/NbxSi1-x/Nb junctions. Using the 265,116

Performance Improvements for the NIST 1 V Josephson arbitrary waveform synthesizer

November 10, 2014
Author(s)
Samuel P. Benz, Steven B. Waltman, Anna E. Fox, Paul D. Dresselhaus, Alain Rufenacht, Logan A. Howe, Robert E. Schwall, Nathan E. Flowers-Jacobs
The performance of the NIST Josephson arbitrary waveform synthesizer has been improved such that it generates a root-mean-square (RMS) output voltage of 1 V with an operating current range greater than 2 mA. Our previous 1 V JAWS circuit achieved this same

NIST 10 V Programmable Josephson Voltage Standard System Using a Low Capacity Cryocooler

November 6, 2014
Author(s)
Logan A. Howe, Anna Fox, Alain Rufenacht, Charles J. Burroughs, Paul Dresselhaus, Samuel Benz, Robert E. Schwall
Rising costs of and difficulty in obtaining liquid helium in many areas of the world provides strong motivation for cryogen-free operation of superconducting devices such as NIST Programmable Josephson Voltage Standard (PJVS) systems. However, operation on

1 V Josephson arbitrary waveform synthesizer

September 17, 2014
Author(s)
Samuel P. Benz, Steven B. Waltman, Anna E. Fox, Paul D. Dresselhaus, Alain Rufenacht, Jason M. Underwood, Charles J. Burroughs
A quantum-accurate waveform with a root-mean-square (RMS) output amplitude of 1 V has been synthesized for the first time. This four-fold increase in voltage over previous systems was achieved through developments and improvements in bias electronics

AC Waveform Source Referenced to a Programmable Josephson Voltage Standard

August 24, 2014
Author(s)
Alain Rufenacht, Charles J. Burroughs, Bryan C. Waltrip, Stephane P. Solve, Paul D. Dresselhaus, Samuel P. Benz
We are integrating an AC waveform source into our Programmable Josephson Voltage Standard system (PJVS). The objective is to provide a convenient, highly automated quantum-referenced source for ac voltage metrology that does not require the use of a

Direct Comparison of two NIST PJVS systems at 10 V

August 27, 2013
Author(s)
Stephane Solve, Alain Rufenacht, Charles J. Burroughs, Samuel Benz
Two NIST Programmable Josephson Voltage Standard (PJVS) systems have been directly compared at 10V using different nanovoltmeters at the temperature of the laboratory. These PJVS systems use arrays double-stacked superconducting-niobium Josephson junctions

Method for Ensuring Accurate AC Waveforms with Programmable Josephson Voltage Standards

June 1, 2013
Author(s)
Charles J. Burroughs, Alain Rufenacht, Samuel Benz, Paul Dresselhaus
The amplitudes of stepwise-approximated sine waves generated by programmable Josephson voltage standards (PJVS) are not intrinsically accurate because the transitions between the quantized voltages depend on numerous conditions. We have developed a method