Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: David Olaya (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 48

Single Flux Quantum-Based Digital Control of Superconducting Qubits in a Multi-Chip Module

June 24, 2023
Author(s)
Chuanhong Liu, Robert McDermott, Britton Plourde, Andrew Ballard, Jonathan DuBois, Pete Hopkins, David Olaya, John Biesecker, Samuel P. Benz, Dan Schmidt, Joel Ullom
The single flux quantum (SFQ) digital superconducting logic family has been proposed as a practical approach for controlling next-generation superconducting qubit arrays with more favorable scaling properties compared to conventional microwave-based

Nb/a-Si/Nb-junction Josephson-based arbitrary waveform synthesizers for quantum information

February 24, 2023
Author(s)
David Olaya, John Biesecker, Manuel Castellanos Beltran, Adam Sirois, Paul Dresselhaus, Samuel P. Benz, Pete Hopkins, Logan Howe
We demonstrate Josephson arbitrary waveform synthesizers (JAWS) with increased operating temperature range for temperatures below 4 K. These JAWS synthesizers were fabricated with externally-shunted Nb/a-Si/Nb junctions whose critical current exhibits

Demonstration of Superconducting Optoelectronic Single-Photon Synapses

October 6, 2022
Author(s)
Saeed Khan, Bryce Primavera, Jeff Chiles, Adam McCaughan, Sonia Buckley, Alexander Tait, Adriana Lita, John Biesecker, Anna Fox, David Olaya, Richard Mirin, Sae Woo Nam, Jeff Shainline
Superconducting optoelectronic hardware is being explored as a path towards artificial spiking neural networks with unprecedented scales of complexity and computational ability. Such hardware combines integrated-photonic components for few-photon, light

Measurement Challenges for Scaling Superconductor-based Quantum Computers

June 23, 2022
Author(s)
Pete Hopkins, Manuel Castellanos Beltran, John Biesecker, Paul Dresselhaus, Anna Fox, Logan Howe, David Olaya, Adam Sirois, Dylan Williams, Samuel P. Benz, Alirio De Jesus Soares Boaventura, Justus Brevik
Global investment in the research and development of quantum information systems by industry, government, and academic institutions continues to accelerate and is expected to reach over $16B by 2027 [1]. Systems based on optical photons, atoms or ions

Digital Control of Superconducting Qubit Using a Josephson Pulse Generator at 3K

March 25, 2022
Author(s)
Logan Howe, Manuel Castellanos Beltran, Adam Sirois, David Olaya, John Biesecker, Paul Dresselhaus, Samuel P. Benz, Pete Hopkins
Scaling of quantum computers to fault-tolerant levels relies critically on the integration of energy-efficient, stable, and reproducible qubit control and readout electronics. In comparison to traditional semiconductor-control electronics (TSCE) located at

Single-Flux-Quantum Multiplier Circuits for Synthesizing Gigahertz Waveforms With Quantum-Based Accuracy

February 3, 2021
Author(s)
Manuel C. Castellanos Beltran, David I. Olaya, Adam J. Sirois, Christine A. Donnelly, Paul Dresselhaus, Samuel Benz, Peter F. Hopkins
We designed, simulated, and experimentally demonstrated components for a microwave frequency digital-to-analog converter (DAC) based on rapid single flux quantum (RSFQ) circuits and a superconducting amplifier based on SQUID stacks. These are key

Planarized process for single-flux-quantum circuits with self-shunted Nb/NbxSi1-x/Nb Josephson junctions

February 18, 2019
Author(s)
David I. Olaya, Manuel C. Castellanos Beltran, Javier Pulecio, John P. Biesecker, Soroush Khadem, Theodore Lewitt, Peter F. Hopkins, Paul D. Dresselhaus, Samuel P. Benz
We describe the single-flux-quantum (SFQ) circuit fabrication process employed at NIST's Boulder Microfabrication Facility. The process includes four superconducting metal layers, one palladium-gold resistor layer, and a contact pad layer. Chemical

RF waveform synthesizers with quantum-based voltage accuracy for communications metrology

February 11, 2019
Author(s)
Peter F. Hopkins, Justus A. Brevik, Manuel C. Castellanos Beltran, Nathan E. Flowers-Jacobs, Anna E. Fox, David I. Olaya, Christine A. Donnelly, Paul D. Dresselhaus, Samuel P. Benz
We report on NIST’s development of Josephson junction-based programmable reference sources to synthesize quantum-accurate, spectrally-pure waveforms for characterizing and improving next generation communication devices and systems. The goal is to provide

Stacked Josephson Junctions as inductors for SFQ circuits

February 11, 2019
Author(s)
Manuel C. Castellanos Beltran, David I. Olaya, Adam J. Sirois, Paul D. Dresselhaus, Samuel P. Benz, Peter F. Hopkins
In order for Single Flux Quantum (SFQ) circuits to be scaled to densities needed for large-scale integration, typical lithographically-patterned circuit components should be made to be as compact as possible. In this work, we characterize the performance

Fabrication of High-Speed and High-Density Single-Flux-Quantum Circuits at NIST

June 11, 2017
Author(s)
David Olaya, Paul Dresselhaus, Pete Hopkins, Samuel P. Benz
The development of a fabrication process for single-flux-quantum (SFQ) digital circuits is a fundamental part of the NIST effort to develop a gigahertz waveform synthesizer with quantum voltage accuracy. This paper describes the current SFQ fabrication

Scalable, High-Speed, Digital Single-Flux-Quantum Circuits at NIST

June 11, 2017
Author(s)
Pete Hopkins, Manuel Castellanos Beltran, Christine A. Donnelly, Paul Dresselhaus, David Olaya, Adam Sirois, Samuel P. Benz
We describe NIST's capabilities for designing and fabricating niobium-based single-flux quantum (SFQ) digital and mixed-signal circuits and show test results of our first circuits. We have assembled a package of software design tools that are readily