Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Fabrizio Giorgetta (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 156

Frequency-Comb-Based Remote Sensing of Greenhouse Gases over Kilometer Air Paths

October 29, 2014
Author(s)
Greg B. Rieker, Fabrizio R. Giorgetta, William C. Swann, Jonathan Kofler, Alexander M. Zolot, Laura C. Sinclair, Esther Baumann, Christopher L. Cromer, G. Petron, Colm Sweeney, P P. Tans, Ian R. Coddington, Nathan R. Newbury
We demonstrate frequency comb tooth-by-tooth measurements of atmospheric gas absorption across a 2-km, turbulent, open-air path through coherent dual-comb spectroscopy. High accuracy, high signal-to-noise transmission spectra are acquired spanning 5990 to

Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance

October 6, 2014
Author(s)
Esther Baumann, Fabrizio R. Giorgetta, Jean-Daniel Deschenes, William C. Swann, Ian R. Coddington, Nathan R. Newbury
Non-contact surface mapping at a distance is interesting in diverse applications including industrial metrology, manufacturing, forensics, and artifact documentation and preservation. Frequency modulated continuous wave (FMCW) laser detection and ranging

Precision limitations in coherent laser ranging due to speckle phase noise

August 15, 2014
Author(s)
Esther Baumann, Jean-Daniel Deschenes, Fabrizio R. Giorgetta, William C. Swann, Ian R. Coddington, Nathan R. Newbury
The ultimate precision of coherent laser three-dimensional mapping of a diffusely scattering surface will be determined by speckle noise. Speckle phase noise gives rise both to apparent range outliers and to excess range noise during lateral scans

Speckle phase noise in coherent laser ranging: fundamental precision limitations

August 8, 2014
Author(s)
Esther Baumann, Jean-Daniel Deschenes, Fabrizio R. Giorgetta, William C. Swann, Ian R. Coddington, Nathan R. Newbury
Frequency-modulated continuous-wave laser detection and ranging (FMCW LADAR) measures the range to a surface through coherent detection of the backscattered light from a frequency-swept laser source. The ultimate limit to the range precision of FMCW LADAR

High Resolution Frequency Comb Molecular Spectroscopy.

November 3, 2013
Author(s)
Ian R. Coddington, Alexander M. Zolot, Esther Baumann, Fabrizio R. Giorgetta, Greg B. Rieker, Jeffrey W. Nicholson, William C. Swann, Nathan R. Newbury
Frequency combs serve as an extremely high accuracy reference across broad portions of the optical spectrum. Dual frequency combs harness this accuracy and allow for fast and highly fidelity molecular spectroscopy.

High-performance free-space photonic links for frequency/time transfer

September 8, 2013
Author(s)
Nathan R. Newbury, Fabrizio R. Giorgetta, William C. Swann, Laura C. Sinclair, Esther Baumann, Ian R. Coddington
We discuss optical two-way time and frequency transfer over air to connect remote optical clocks/oscillators. This method can link remote sites with a residual timing noise of femtoseconds and a residual fractional accuracy below 10^-18.

The impact of turbulence on high accuracy time-frequency transfer across free space

June 26, 2013
Author(s)
Laura C. Sinclair, Fabrizio R. Giorgetta, William C. Swann, Esther Baumann, Ian R. Coddington, Nathan R. Newbury
Atmospheric optical path-length variations are measured across a 2-km optical link through a frequency comb-based system with femtosecond-level precision. Without mitigation, the turbulent piston effect will severely restrict time-frequency transfer from

A comb-calibrated FMCW LADAR for absolute distance measurements

June 15, 2013
Author(s)
Esther Baumann, Fabrizio R. Giorgetta, Ian R. Coddington, Laura C. Sinclair, Kevin O. Knabe, William C. Swann, Nathan R. Newbury
We present a comb calibrated frequency-modulated continuous wave (FMCW) LADAR system for absolute distance measurements to diffuse or specular surfaces. The FMCW LADAR uses a MEMS-based external cavity laser that is swept quasi-sinusoidally over 1 THz at a

Free-space optical time-frequency transfer over 2 km

June 9, 2013
Author(s)
William C. Swann, Fabrizio R. Giorgetta, Laura C. Sinclair, Esther Baumann, Ian R. Coddington, Nathan R. Newbury
Precision free-space time-frequency transfer could advance fields where present microwave-based transfer is inadequate. We demonstrate an optical free-space link with femtosecond timing deviation and residual instability below 10 −18 at 1000 seconds.

Open-Path Dual-Comb Spectroscopy of Greenhouse Gases

June 9, 2013
Author(s)
Greg B. Rieker, Fabrizio R. Giorgetta, William C. Swann, Ian R. Coddington, Laura C. Sinclair, Christopher L. Cromer, Esther Baumann, Alexander M. Zolot, Nathan R. Newbury
Frequency-comb spectroscopy in the near-infrared is used to measure atmospheric CO2 and H2O concentrations over a 2-km outdoor open-air path. This technique shows promise for measurements over length scales between point sensors and satellite systems.

Precision metrology with coherent dual frequency combs

May 12, 2013
Author(s)
Nathan R. Newbury, Esther Baumann, Ian R. Coddington, Fabrizio R. Giorgetta, Greg B. Rieker, Laura C. Sinclair, William C. Swann, Alexander M. Zolot
Frequency combs have enabled a wide range of applications because of their unique combination of coherence and broad bandwidth. The comb provides 100,000's of comb teeth at precise, well-known optical frequencies that can support broadband accurate

Optical two-way time and frequency transfer over free space

April 28, 2013
Author(s)
Fabrizio R. Giorgetta, William C. Swann, Laura C. Sinclair, Esther Baumann, Ian R. Coddington, Nathan R. Newbury
The transfer of high-quality time-frequency signals between remote locations underpins many applications, including precision navigation and timing, clock-based geodesy, long-baseline interferometry, coherent radar arrays, tests of general relativity and