Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Douglas Alan Bennett (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 59 of 59

Current Distribution and Transition Width in Superconducting Transition-Edge Sensors

December 13, 2012
Author(s)
Daniel S. Swetz, Douglas A. Bennett, Daniel R. Schmidt, Joel N. Ullom
Present models of the superconducting-to-normal transition in transition-edge sensors (TESs)do not describe the current distribution within a biased TES. This distribution is complicated by normal-metal features that are integral to TES design. We present

Observation of bias-specific telegraph noise in large transition-edge sensors

December 11, 2012
Author(s)
Vincent Y. Kotsubo, Douglas A. Bennett, Mark Croce, Michael W. Rabin, Daniel R. Schmidt, Joel N. Ullom
We have observed anomalous random telegraph noise in discrete regions of voltage bias throughout the superconducting transition in larger transition-edge sensors (TESs). The bimodal nature of these noise features is consistent with thermally activated

A high resolution gamma-ray spectrometer based on superconducting microcalorimeters

September 28, 2012
Author(s)
Douglas A. Bennett, Robert D. Horansky, Daniel R. Schmidt, Andrew Hoover, Ryan Winkler, Bradley K. Alpert, James A. Beall, William B. Doriese, Joseph W. Fowler, Gene C. Hilton, Kent D. Irwin, Nathan J. Hoteling, Vincent Y. Kotsubo, John A. Mates, Galen C. O'Neil, Michael W. Rabin, Carl D. Reintsema, Francis J. Schima, Daniel S. Swetz, Leila R. Vale, Joel N. Ullom
Improvements in superconductor device fabrication, detector hybridization techniques, and superconducting quantum interference device readout have made square-centimeter-sized arrays of gammaray microcalorimeters, based on transition-edge sensors (TESs)

A two-fluid model for the transition shape in transition-edge sensors

May 1, 2012
Author(s)
Douglas A. Bennett, Daniel S. Swetz, Robert D. Horansky, Daniel R. Schmidt, Joel N. Ullom
Superconducting microcalorimeters based on transition-edge sensors (TESs) are being successfully used in applications ranging from optical photon counting to gamma-ray and alpha particle spectroscopy. Practical instruments often require a complex

An Analytical Model for Pulse Shape and Electrothermal Stability in Two-Body Microcalorimeters

September 9, 2010
Author(s)
Douglas A. Bennett, Robert D. Horansky, Daniel R. Schmidt, Daniel S. Swetz, Leila R. Vale, Joel N. Ullom, Andrew Hoover, Michael W. Rabin, Nathan J. Hoteling
High resolution superconducting gamma-ray sensors show potential for the more accurate analysis of nuclear material. These devices are part of a larger class of microcalorimeters and bolometers based on transition edge sensors (TESs) that have two distinct

Two-Body Models for Analyzing Complex Impedance

July 24, 2009
Author(s)
Douglas A. Bennett, Robert D. Horansky, Joel N. Ullom
Complex impedance is an important and widely used technique for characterizing microbolometers and microcalorimeters. Often, complex impedance data from actual devices does not fit the simple one-body model of a TES microcalorimeter. In this paper we will

Improved Isotopic Analysis With a Large Array of Gamma-Ray Microcalorimeters

June 30, 2009
Author(s)
Nikhil Jethava, Joel N. Ullom, Douglas A. Bennett, William B. Doriese, James A. Beall, Gene C. Hilton, Robert D. Horansky, Kent D. Irwin, Eric Sassi, Leila R. Vale, Minesh K. Bacrania, Andrew Hoover, P. J. Karpius, Michael W. Rabin, Clifford R. Rudy, Duc T. Vo
We present results from the largest array of gamma-ray microcalorimeters operated to date. The microcalorimeters consist of Mo/Cu transition-edge sensors with attached Sn absorbers. The detector array contains 66 pixels each with an active area 2.25 mm 2

Improved Isotopic Analysis with a Large Array of Gamma-ray Microcalorimeters

June 30, 2009
Author(s)
Nikhil Jethava, Joel N. Ullom, Douglas A. Bennett, William B. Doriese, James A. Beall, Gene C. Hilton, Robert D. Horansky, Kent D. Irwin, Eric Sassi
We present results from the largest array of gamma-ray microcalorimeters operated to date. The microcalorimeters consist of Mo/Cu transition-edge sensors with attached Sn absorbers. The detector array contains 66 pixels each with an active area 2.25 mm2