Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Walid Keyrouz (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 39 of 39

Acceleration and Parallelization of ZENO/Walk-on-Spheres

June 1, 2016
Author(s)
Derek Juba, Walid Keyrouz, Michael V. Mascagni, Mary C. Brady, Michael Mascagni
This paper describes our on-going work to accelerate ZENO, a software tool based on Monte Carlo methods (MCMs), used for computing material properties at the nanoscale. ZENO employs three main algorithms: (1)Walk on Spheres (WoS), (2)interior sampling, and

A Hybrid Task Graph Scheduler for High Performance Image Processing Workflows

December 16, 2015
Author(s)
Timothy J. Blattner, Walid Keyrouz, Milton Halem, Shuvra S. Bhattacharyya, Mary C. Brady
The scalability of applications is a key requirement to improving performance in hybrid and cluster computing. Scheduling code to utilize parallelism is difficult, particularly when dealing with dependencies, memory management, data motion, and processor

Scientific Software Sustainability: The Numerical Reproducibility Challenge

October 15, 2015
Author(s)
Walid Keyrouz, Michael V. Mascagni
Experimental reproducibility is a cornerstone of the scientific method. The ease of achieving its counterpart in computing, numerical reproducibility, was one of the core assumptions underpinning the growth of scientific computing over the past several

A Hybrid CPU-GPU System for Stitching Large Scale Optical Microscopy Images

September 12, 2014
Author(s)
Timothy Blattner, Walid Keyrouz, Joe Chalfoun, Bertrand C. Stivalet, Mary C. Brady, Shujia Zhou
Researchers in various fields are using optical microscopy to acquire very large images, 10K--200K of pixels per side. Optical microscopes acquire these images as grids of overlapping partial images (thousands of pixels per side) that are then stitched

A Hybrid CPU-GPU Approach to Fourier-Based Image Stitching of Optical Microscopy Images

March 3, 2013
Author(s)
Walid Keyrouz, Timothy J. Blattner, Bertrand C. Stivalet, Joe Chalfoun, Mary C. Brady, Shujia Zhou
We present a hybrid CPU-GPU approach for the Fourier-based stitching of optical microscopy images. This system achieves sub-minute stitching rates with large grids; it stitches a grid of 59x42 tiles in 26 seconds on a two-CPU (8 physical cores) & two-GPU