Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Daniel Slichter (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 43 of 43

Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence

April 29, 2020
Author(s)
R. T. Sutherland, Raghavendra Srinivas, Shaun C. Burd, Hannah Knaack, Andrew C. Wilson, David J. Wineland, Dietrich Leibfried, David T. Allcock, Daniel Slichter, S. B. Libby
The dominant error sources for state-of-the-art implementations of laser-free trapped-ion entangling gates are decoherence of the qubit state and motion. The gate error from these decoherence mechanisms can be suppressed with additional control fields, or

Quantum amplification of motion of a mechanical oscillator

June 21, 2019
Author(s)
Shaun C. Burd, Raghavendra Srinivas, John J. Bollinger, Andrew C. Wilson, David J. Wineland, Dietrich G. Leibfried, Daniel H. Slichter, David T. Allcock
Detection of the weakest forces in nature and the search for new physics demand increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator’s motion is limited by quantum fluctuations that

Trapped-ion spin-motion coupling with microwaves and a near-motional oscillating magnetic field gradient

April 26, 2019
Author(s)
Raghavendra Srinivas, Shaun C. Burd, R. T. Sutherland, Andrew C. Wilson, David J. Wineland, Dietrich G. Leibfried, David T. Allcock, Daniel H. Slichter
We present a new method of spin-motion coupling for trapped ions using microwaves and a magnetic field gradient oscillating close to the ions' motional frequency. We demonstrate and characterize this coupling experimentally using a single ion in a surface

Versatile laser-free trapped-ion entangling gates

March 28, 2019
Author(s)
R. T. Sutherland, Raghavendra Srinivas, Shaun C. Burd, Dietrich Leibfried, Andrew C. Wilson, David J. Wineland, David T. Allcock, Daniel Slichter, S. B. Libby
We present a general theory for laser-free entangling gates with trapped-ion hyperfine qubits, using either static or oscillating magnetic-field gradients combined with a pair of uniform microwave fields symmetrically detuned about the qubit frequency. By

Evidence for multiple mechanisms underlying surface-electric field noise in ion traps

December 27, 2018
Author(s)
J. A. Sedlacek, J. Stuart, Daniel Slichter, C. D. Bruzewicz, R. McConnell, J. M. Sage, J. Chiaverini
Energetic ion bombardment, or ion milling, of ion-trap electrode surfaces has previously been shown to reduce electric-field noise, a limit to quantum-logic gate fidelity, generated by the surface. Here, using motional heating of a single trapped strontium

UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap

April 17, 2017
Author(s)
Daniel H. Slichter, Varun B. Verma, Dietrich G. Leibfried, Richard P. Mirin, Sae Woo Nam, David J. Wineland
We demonstrate superconducting nanowire single photon detectors with 76 +/- 4% system detection efficiency at a wavelength of 315 nm and an operating temperature of 3.2 K, with a background count rate below 1 count per second at saturated detection

VECSEL systems for generation and manipulation of trapped magnesium ions

November 8, 2016
Author(s)
Shaun C. Burd, David T. Allcock, Tomi Leinonen, Jussi-Pekka Penttinen, Daniel H. Slichter, Raghavendra Srinivas, Andrew C. Wilson, Robert Jordens, Micrea Guina, Dietrich G. Leibfried, David J. Wineland
Experiments in atomic, molecular, and optical (AMO) physics rely on lasers at many different wave- lengths and with varying requirements on spectral linewidth, power and intensity stability. Vertical external-cavity surface-emitting lasers (VECSELs), when

Single-frequency 571 nm VECSEL for photoionization of magnesium

June 3, 2016
Author(s)
Shaun C. Burd, Tomi Leinonen, Jussi-Pekka Penttinen, David T. Allcock, Daniel H. Slichter, Raghavendra Srinivas, Andrew C. Wilson, Micrea Guina, Dietrich G. Leibfried
We report the development of an intracavity-frequency-doubled VECSEL emitting at 571 nm for photoionization of magnesium. The laser employs a V-cavity geometry with a gain chip at the end of one cavity arm and a lithium triborate (LBO) crystal for second

Single-Mode Optical Fiber For High-Power, Low-Loss UV Transmission

August 8, 2014
Author(s)
Daniel H. Slichter, Yves Colombe, Andrew C. Wilson, Dietrich G. Leibfried, David J. Wineland
We report large-mode-area solid-core photonic crystal fibers made from fused silica which resist UV solarization even at relatively high optical powers. Using a process of hydrogen loading and UV irradiation of the fibers, we demonstrate stable single-mode