Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Brandon Lane (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 78

In-process monitoring and non-destructive evaluation for metal additive manufacturing processes

September 17, 2024
Author(s)
Alkan Donmez, Jason Fox, Felix Kim, Brandon Lane, Maxwell Praniewicz, Vipin Tondare, Jordan Weaver, Paul Witherell
The rapid pace of maturation of metal additive manufacturing (AM) technologies, makes them an excellent candidate for the fabrication of nuclear power plant (NPP) components. However, the current levels of process variations create numerous challenges yet

Cross-Sectional Melt Pool Geometry of Laser Scanned Tracks and Pads on Nickel Alloy 718 for the 2022 Additive Manufacturing Benchmark Challenges

May 7, 2024
Author(s)
Jordan Weaver, David Deisenroth, Sergey Mekhontsev, Brandon Lane, Lyle E. Levine, Ho Yeung
AM Bench is a NIST-led organization that provides a continuing series of additive manufacturing (AM) benchmark measurements, challenge problems, and conferences with the primary goal of enabling modelers to test their simulations against rigorous, highly

MULTI-SCALE MODEL PREDICTIVE CONTROL FOR LASER POWDER BED FUSION ADDITIVE MANUFACTURING

March 20, 2024
Author(s)
Gi Suk Hong, Zhuo Yang, Yan Lu, Brandon Lane, Ho Yeung, Jaehyuk Kim
Additive manufacturing (AM) process stability is critical for ensuring part quality. Model Predictive Control (MPC) has been widely recognized as a robust technology for controlling manufacturing processes across various industries. Despite its widespread

High-resolution Melt Pool Thermal Imaging for Metals Additive Manufacturing Using the Two-color Method with a Single Color Camera

July 5, 2023
Author(s)
Alexander Myers, Guadalupe Quirarte, Francis Ogoke, Brandon Lane, Syed Uddin, Amir Barati Farimani, Jack Beuth, Jonathan Malen
We introduce an experimental method to image melt pool temperature with a single commercial color camera and compare the results with multi-physics computational fluid dynamic (CFD) models. This approach leverages the principle of two-color (i.e

Laser spot size and scaling laws for laser beam additive manufacturing

November 3, 2021
Author(s)
Jordan Weaver, Jarred C. Heigel, Brandon Lane
Laser powder bed fusion (L-PBF) additive manufacturing (AM) requires the careful selection of laser process parameters for each feedstock material and machine, which is a laborious process. Scaling laws based on the laser power, speed, and spot size; melt

Measurement Uncertainty of Surface Temperature Distributions for Laser Powder Bed Fusion Processes

August 10, 2021
Author(s)
David Deisenroth, Sergey Mekhontsev, Brandon Lane, Leonard M. Hanssen, Ivan Zhirnov, Vladimir Khromchenko, Steven Grantham, Daniel Cardenas-Garcia, Alkan Donmez
This paper describes advances in measuring the characteristic spatial distribution of surface temperature and emissivity during laser-metal interaction under conditions relevant for laser powder bed fusion (LPBF) additive manufacturing processes. Detailed

Numerical Evaluation of Advanced Laser Control Strategies Influence on Residual Stresses for Laser Powder Bed Fusion Systems

November 30, 2020
Author(s)
Carraturo Massimo, Brandon Lane, Ho Yeung, Stefan Kollmannsberger, Alessandro Reali, Ferdinando Auricchio
Process-dependent residual stresses are one of the main burdens to a wide spread adoption of laser powder bed fusion technology in industry. Residual stresses are directly influenced by process parameters, such as laser path, laser power, and speed. In

Development of Computational Framework for Titanium Alloy Phase Transformation Prediction in Laser Powder-bed Direct Energy Additive Manufacturing

October 16, 2020
Author(s)
Zhi Liang, Ivan Zhirnov, Fan Zhang, Kevontrez K. Jones, David C. Deisenroth, Maureen E. Williams, Ursula R. Kattner, Kil-Won Moon, Wing-Kam Liu, Brandon M. Lane, Carelyn E. Campbell
In conjunction with bare metal single laser track validation experiments, a computational framework is proposed to accelerate the design and development of new additive manufacturing (AM) specific alloys. Specifically, Additive Manufacturing-Computational

Transient Laser Energy Absorption, Co-axial Melt Pool Monitoring, and Relationship to Melt Pool Morphology

August 16, 2020
Author(s)
Brandon M. Lane, Ivan Zhirnov, Sergey Mekhontsev, Steven E. Grantham, Richard E. Ricker, Santosh Rauniyar, Kevin Chou
Many recent and ongoing studies into the complex melt pool physics during laser powder bed fusion (LPBF) metal additive manufacturing (AM) process measure various aspects of energy transport surrounding the laser-induced melt pool, with focus on laser