Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Son T. Le (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 38 of 38

Contact and Non-Contact Measurement of Electronic Transport in Individual 2D SnS Colloidal Semiconductor Nanocrystals

September 24, 2018
Author(s)
Adam J. Biacchi, Son T. Le, Brian G. Alberding, Joseph A. Hagmann, Sujitra J. Pookpanratana, Edwin J. Heilweil, Curt A. Richter, Angela R. Hight Walker
Colloidal-based solution syntheses offer a scalable and cost-efficient means of producing 2D nanomaterials in high yield. While much progress has been made towards the controlled and tailorable synthesis of semiconductor nanocrystals in solution, it

Interacting nanoscale magnetic cluster arrays in molybdenum oxide bronzes

May 26, 2017
Author(s)
Joseph A. Hagmann, Son T. Le, Lynn F. Schneemeyer, Joseph A. Stroscio, Tiglet Besara, Theo Siegrist, Curt A. Richter, David G. Seiler
In this study, we examine several reduced ternary molybdates in the family of rare earth molybdenum bronzes produced by electrochemical synthesis with composition LnMo16O44. These compounds contain an array of electrically isolated but magnetically

Elucidating the Structural and Electronic Properties of Solution-Synthesized 2D SnS Crystals

March 28, 2017
Author(s)
Adam J. Biacchi, Brian G. Alberding, Son T. Le, Joseph A. Hagmann, Sugata Chowdhury, Curt A. Richter, Edwin J. Heilweil, Angela R. Hight Walker
The vast majority of nanoscale 2D materials are synthesized by exfoliation or gas phase deposition techniques. Alternatively, bottom-up colloidal solution syntheses offer a scalable and cost-efficient means of producing 2D nanomaterials in high yield

Edge-state Transport in Graphene p-n Junctions in the Quantum Hall Regime

December 7, 2015
Author(s)
Nikolai Klimov, Son T. Le, Jun Yan, Pratik Agnihotri, Everett Comfort, Ji Ung Lee, David B. Newell, Curt A. Richter
We experimentally investigate charge carrier transport in a graphene p-n junction device by using independent p-type and n-type electrostatic gating which allow full characterization of the junction interface in the quantum Hall regime covering a wide