Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Wenqi Zhu (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 73

Three-dimensional, multi-wavelength beam formation with integrated metasurface optics for Sr laser c

October 17, 2024
Author(s)
Sindhu Jammi, Andrew Ferdinand, Zheng Luo, Zachary Newman, Grisha Spektor, Junyeob Song, Okan Koksal, William Lunden, Daniel Sheredy, Parth Patel, Martin Boyd, Wenqi Zhu, Amit Agrawal, Travis Briles, Scott Papp
We demonstrate formation of a complex, multi-wavelength, three-dimensional laser beam configuration with integrated metasurface optics. Our experiments support development of a compact Sr optical-lattice clock, which leverages magnetooptical trapping on

Laser cooling 88Sr to microkelvin temperature with an integrated-photonics system

April 19, 2024
Author(s)
Andrew Ferdinand, Zheng Luo, Sindhu Jammi, Zachary Newman, Grisha Spektor, Okan Koksal, Akash Rakholia, Daniel Sheredy, Parth Patel, Travis Briles, Wenqi Zhu, Martin Machai Boyd, Amit Agrawal, Scott Papp
We report on experiments generating a magneto-optical trap (MOT) of 88-strontium (88Sr) atoms at microkelvin temperature, using integrated-photonics devices. With metasurface optics integrated on a fused-silica substrate, we generate six-beam, circularly p

Integrating planar photonics for multi-beam generation and atomic clock packaging on chip

April 3, 2023
Author(s)
Chad Ropp, Wenqi Zhu, Alexander Yulaev, Daron Westly, Gregory Simelgor, Akash Rakholia, William Lunden, Dan Sheredy, Martin Boyd, Scott Papp, Amit Agrawal, Vladimir Aksyuk
The commercialization of atomic technologies requires replacing laboratory-scale laser setups with compact and manufacturable optical platforms. Complex arrangements of free-space beams can be generated on chip through a combination of integrated photonics

Highly-twisted states of light from a high quality factor photonic crystal ring

February 27, 2023
Author(s)
Xiyuan Lu, Mingkang Wang, Feng Zhou, Mikkel Heuck, Wenqi Zhu, Vladimir Aksyuk, Dirk Englund, Kartik Srinivasan
Twisted light with orbital angular momentum (OAM) has been extensively studied for applications in quantum and classical communications, microscopy, and optical micromanipulation. Ejecting the naturally high angular momentum whispering gallery modes (WGMs)

Synthesizing ultrafast optical pulses with arbitrary spatiotemporal control

October 26, 2022
Author(s)
Lu Chen, Wenqi Zhu, Pengcheng Huo, Junyeob Song, Henri Lezec, Ting Xu, Amit Agrawal
The ability to control the instantaneous state of light – its phase, amplitude, polarization, or wavefront – of high-energy pulses down to the single-photon level is an indispensable and a necessary requirement in photonics. This has, for example

Broadband Nanoscale Surface-Enhanced Raman Spectroscopy by Multiresonant Nanolaminate Plasmonic Nanocavities on Vertical Nanopillars

August 8, 2022
Author(s)
Meitong Nie, Yuming Zhao, Wonil Nam, Junyeob Song, Wenqi Zhu, Henri Lezec, Amit Agrawal, Wei Zhou
Surface-enhanced Raman spectroscopy (SERS) has become a sensitive detection technique for biochemical analysis. Despite significant research efforts, most SERS substrates consisting of single-resonant plasmonic nanostructures on the planar surface suffer

Single-atom trapping in a metasurface-lens optical tweezer

August 1, 2022
Author(s)
Ting-Wei Hsu, Wenqi Zhu, Tobias Thiele, Mark Brown, Scott Papp, Amit Agrawal, Cindy Regal
Single neutral atoms in optical tweezers have become an important platform for quantum simulation, computing, and metrology [1-3]. With ground-up control similar to trapped ions, individual atoms can be prepared and entangled [2, 4, 5], and the scalability

Full-Stokes polarimetry for visible light enabled by an all-dielectric metasurface

February 20, 2022
Author(s)
Yongze Ren, Shihao Guo, Wenqi Zhu, Pengcheng Huo, Sijia Liu, Song Zhang, Peng Chen, Lu Chen, Henri Lezec, Amit Agrawal, Yanqing Lu, Ting Xu
Decoding arbitrary polarization information from an optical field has triggered unprecedented endeavors in polarization imaging, remote sensing and information processing. Therefore, developing a polarization detection device with full on-chip integration

Generation of perfect vortex beams by dielectric geometric metasurface for visible light

October 31, 2021
Author(s)
Qianwei Zhou, Mingze Liu, Wenqi Zhu, Lu Chen, Yongze Ren, Henri Lezec, Yanqing Lu, Ting Xu, Amit Agrawal
Perfect vortex beam (PVB) is a propagating optical field carrying orbital angular momentum (OAM) with a radial intensity profile that is independent of topological charge. PVB can be generated through the Fourier transform of a Bessel-Gaussian beam, which

Interfacing Photonics to Free-Space via Large-area Inverse-designed Diffraction Elements and Metasurfaces

June 6, 2021
Author(s)
Alexander Yulaev, Wenqi Zhu, Chad Ropp, Daron Westly, Gregory Simelgor, Cheng Zhang, Henri Lezec, Amit Agrawal, Vladimir Aksyuk
Large-area inverse-designed photonic gratings and optical metasurfaces directly couple waveguides to wide free-space modes with custom wavefronts and polarizations in the visible and near-infrared. Design, modeling methods and experimental results are

Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states

May 25, 2021
Author(s)
Mingze Liu, Wenqi Zhu, Pengcheng Huo, Lei Feng, Maowen Song, Cheng Zhang, Lu Chen, Henri Lezec, Yanqing Lu, Amit Agrawal, Ting Xu
Monochromatic light can be characterized by its three fundamental properties: amplitude, phase and polarization. In this work, we propose a versatile, transmission-mode all-dielectric metasurface platform that can independently manipulate the phase and