Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Evgheni Strelcov (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 42

Signal size and resolution of scanning thermal microscopy in air and vacuum

April 1, 2025
Author(s)
Jabez McClelland, Evgheni Strelcov, Ami Chand
We present measurements comparing scanning thermal microscopy in air and vacuum. Signal levels are compared and resolution is probed by scanning over the edge of a nanofabricated Ag square embedded in SiO2. Signals measured in air were seen to be 2.5 to 40

Materials Discovery in Combinatorial and High-throughput Synthesis and Processing: A New Frontier for SPM

January 5, 2025
Author(s)
Boris Slautin, Yungtao Liu, Yu Liu, Reece Emery, Seungbum Hong, Astita Dubey, Vladimir Shvartsman, Doru Lupascu, Sheryl Sanchez, Mahshid Ahmadi, Yunseok Kim, Evgheni Strelcov, Keith Brown, Philip Rack, Sergei Kalinin
For over three decades, scanning probe microscopy (SPM) has been a key method for exploring material structures and functionalities at nanometer and often atomic scales in ambient, liquid, and vacuum environments. Historically, SPM applications have

Operando XPS for Plasma Process Monitoring: A Case Study on the Hydrogenation of Copper Oxide Confined under h-BN

April 29, 2024
Author(s)
Trey Diulus, Andrew Naclerio, J. Anibal Boscoboinik, Ashley Head, Evgheni Strelcov, Piran Kidambi, Andrei Kolmakov
We demonstrate that ambient pressure x-ray photoelectron spectroscopy (APXPS) can be used for in situ studies of dynamic changes in surface chemistry in a plasma environment. Hexagonal boron nitride (h-BN) was used in this study as a model system since it

A quantum ruler for orbital magnetism in moire quantum matter

October 5, 2023
Author(s)
Marlou Slot, Yulia Maximenko, Paul M. Haney, Sungmin Kim, Daniel Walkup, Evgheni Strelcov, En-Min Shih, Dilek Yildiz, Steven R. Blankenship, Kenji Watanabe, Takashi Taniguchi, Yafis Barlas, Nikolai Zhitenev, Fereshte Ghahari Kermani, Joseph A. Stroscio
Topological properties that underlie the rich emergent phases of moiré quantum matter (MQM) result from the eigenstate geometry of the moiré Hamiltonian. The eigenstate geometry involves the Berry curvature and the less known quantum metric. Most studies

Spatially Resolved Potential and Li-Ion Distributions Reveal Performance-Limiting Regions in Solid-State Batteries

October 19, 2021
Author(s)
Elliot Fuller, Evgheni Strelcov, Jamie Weaver, Michael Swift, Joshua Sugar, Andrei Kolmakov, Nikolai Zhitenev, Jabez J. McClelland, Yue Qi, Joseph Dura, Alec Talin
The performance of solid-state electrochemical systems is intimately tied to the potential and lithium distributions across electrolyte–electrode junctions that give rise to interface impedance. Here, we combine two operando methods, Kelvin probe force

Probing Electrified Liquid-Solid Interfaces with Scanning Electron Microscopy

December 2, 2020
Author(s)
Hongxuan Guo, Alexander Yulaev, Evgheni Strelcov, Alexander Tselev, Christopher M. Arble, Andras Vladar, John S. Villarrubia, Andrei Kolmakov
The mean free path of secondary electrons in aqueous solutions is on the order of a nanometer, making them a suitable probe of ultrathin electrical double layers at solid-liquid electrolyte interfaces. Employing graphene as an electron-transparent

Electron and x-ray focused beam-induced cross-linking in liquids: Toward rapid continuous 3D nanoprinting and interfacing using soft materials

September 15, 2020
Author(s)
Tanya Gupta, Evgheni Strelcov, Glenn Holland, Joshua D. Schumacher, Yang Yang, Mandy Esch, Vladimir Aksyuk, Patrick Zeller, Matteo Amati, Luca Gregoratti, Andrei Kolmakov
Additive fabrication of biocompatible 3D structures out of liquid hydrogel solutions has become pivotal technology for tissue engineering, soft robotics, biosensing, drug delivery etc. Electron and X-ray lithography are well suited to pattern nanoscopic

Radiation damage of liquid electrolyte during focused X-ray beam photoelectron spectroscopy

April 12, 2020
Author(s)
Christopher M. Arble, Hongxuan Gou, Evgheni Strelcov, Brian D. Hoskins, Patrick Zeller, Matteo Amati, Luca Gregoratti, Andrei A. Kolmakov
Ambient pressure X-ray photoelectron spectroscopy (APXPS) has become an effective tool to interrogate chemical states at surfaces relevant to real operational conditions. Herein we employ a graphene-capped microvolume array sample platform for scanning

Nanoscale mapping of the double layer potential at the graphene-electrolyte interface

January 28, 2020
Author(s)
Evgheni Strelcov, Christopher M. Arble, Hongxuan Guo, Brian D. Hoskins, Alexander Yulaev, Ivan Vlassiouk, Nikolai B. Zhitenev, Alexander Tselev, Andrei A. Kolmakov
The structure and potential drop across the electrical double layer (EDL) govern the operation of multiple electrochemical devices, determine reaction potentials and condition ion transport through the cellular membranes in living organisms. Despite more

Direct-write Lithiation of Silicon Using a Focused Ion Beam of Li+

July 8, 2019
Author(s)
William R. McGehee, Evgheni Strelcov, Vladimir P. Oleshko, Christopher L. Soles, Nikolai B. Zhitenev, Jabez J. McClelland
Electrochemical processes that govern the performance of lithium ion batteries involve numerous parallel reactions and interfacial phenomena that complicate the microscopic understanding of these systems. As a new way to study the behavior of ion transport

In aqua electrochemistry probed by XPEEM: experimental setup, examples, and challenges

November 10, 2018
Author(s)
Slavomir Nemsak, Evgheni Strelcov, Hongxuan Guo, Brian Hoskins, Tomas Duchon, D Muller, Alexander Yulaev, Ivan Vlassiouk, Alexander Tselev, Andrei Kolmakov
Recent developments in environmental and liquid cells equipped with electron transparent graphene windows have enabled traditional surface science spectromicroscopy tools, such as XPS, PEEM, and SEM to be applied to study solid-liquid and liquid-gas